MHB Roots of Polynomial: Find $\frac{1}{A}+\frac{1}{B}+\frac{1}{C}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomial Roots
Click For Summary
The discussion centers on finding the values of A, B, and C in the context of the polynomial equation x^3 - 22x^2 + 80x - 67, whose roots are p, q, and r. The equation is expressed in terms of partial fractions, leading to the relationship between the coefficients and the roots. Participants analyze the structure of the polynomial and apply techniques from algebra to derive the values of A, B, and C. Ultimately, the question posed is whether the sum of the reciprocals, 1/A + 1/B + 1/C, equals 244. The conclusion is that the correct answer is indeed 244.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $p,\,q$ and $r$ be the distinct roots of the polynomial $x^3-22x^2+80x-67$. It is given that there exist real numbers $A,\,B$ and $C$ such that

$\dfrac{1}{s^3-22s^2+80s-67}=\dfrac{A}{s-p}+\dfrac{B}{s-q}+\dfrac{C}{s-r}$ for all $s\not \in \{p,\,q,\,r\}$. What is $\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}$?
 
Mathematics news on Phys.org
Is answer 244?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...