Careful
- 1,670
- 0
HUH ? Did I somewhere claim that the definition of conjugacy is non tensorial ?selfAdjoint said:? Surely the inner product in a Riemannian geometry is tensorial? So the definition of conjugacy is too? And therefore the statements remain true even though the elements in them change with diffeomorphism equivalent frames. And when you lift these covariant statements to the tangent spaces in the two frames you get cvorrsponding geometric statemnts: two vectors and a projection are correct in both cases though the vectors are different. Not so?
What I said is that in the general case outlined in dg-ga/9702017, the definition of D depends upon the notion of conjugacy (although this does not apply to the special case Torsten uses) and not only upon D_E, D_F and the bundle map \alpha !