- #1

- 1

- 0

## Homework Statement

I'm working at the exercise 6.8 of Jackson's Classical Electrodynamics. Here it is :

We consider a dielectric sphere of dielectric constant [tex]\epsilon[/tex] and of radius [tex]a[/tex] located at the origin. There is a uniform applied electric field [tex]E_0[/tex] in the [tex]x[/tex] direction. The sphere rotates with an angular velocity [tex]\omega[/tex] about the [tex]z[/tex] axis. We have to show that there is a magnetic field [tex]\textbf{H} = - \nabla \Phi_M[/tex] where :

[tex]\Phi_M(\textbf{x}) = \frac{3}{5}\epsilon_0 \left( \frac{\epsilon - \epsilon_0}{\epsilon + 2 \epsilon_0} \right) E_0 \omega \left( \frac{a}{r_<} \right)^5 x z[/tex]

where [tex]r_> = \max(r, a)[/tex]. The motion is nonrelativistic.

## The Attempt at a Solution

In every solutions I found (here is a good one : http://www-personal.umich.edu/~pran/jackson/P505/p10s.pdf" ), they suppose that the polarization of the sphere is the same as if the sphere stayed static :

[tex]\mathbf{P} = 3 \epsilon_0 \left( \frac{\epsilon - \epsilon_0}{\epsilon + 2 \epsilon_0} \right) E_0[/tex]

I guess we may assume this because we suppose the motion is nonrelativistic ?

So we have a bound surface charge density

[tex]\sigma_{pol} = \mathbf{P} \cdot \mathbf{\hat{n}}[/tex]

where [tex]\hat{n}[/tex] is the normal vector to the sphere.

Now comes the part I don't understand. They suppose, since the sphere is rotating, there is an effective surface current with density :

[tex]\mathbf{K}_M = \sigma_{pol}(\mathbf{x}) . \mathbf{v}(\mathbf{x})[/tex]

I don't understand why we may suppose the existence of such surface current since, as I see the situation, the surface charge density stay constant because we assumed the polarization was the same as if the sphere didn't rotate...

I hope I was clear :)

Thank you in advance !

Last edited by a moderator: