Undergrad Rotation curve of a gas disk in an elliptical galaxy

  • Thread starter Thread starter Sofia Piol
  • Start date Start date
  • Tags Tags
    Dark matter
Click For Summary
SUMMARY

The discussion focuses on the analysis of the rotation curve of a gas disk in the elliptical galaxy NGC 5018, with an emphasis on demonstrating the existence of dark matter. Sofia, the original poster, is comparing theoretical calculations of the rotation curve using the Jaffe profile for mass distribution against actual measurements. Key insights include the need for total mass and scale radius to accurately plot the rotation curve, as well as the importance of considering the influence of dark matter on observed velocities.

PREREQUISITES
  • Understanding of rotation curves in astrophysics
  • Familiarity with the Jaffe profile for mass distribution
  • Knowledge of dark matter implications in galactic dynamics
  • Basic concepts of elliptical galaxies and their formation
NEXT STEPS
  • Research the methods for measuring the total mass of elliptical galaxies
  • Learn about the implications of dark matter on rotation curves
  • Study the textbook "Galactic Dynamics" by Binney & Tremaine for foundational knowledge
  • Explore case studies of other elliptical galaxies with rotating gas disks
USEFUL FOR

Astronomers, astrophysicists, and students studying galactic dynamics, particularly those interested in dark matter research and the behavior of elliptical galaxies.

Sofia Piol
Messages
2
Reaction score
0
TL;DR
rotation curve of a gas disk in an elliptical galaxy
Hello, I'm Sofia and new here! I'm working on a project in which I'm trying to show that dark matter exists. It's about an elliptical galaxy with a rotating gas disk.

What I'm doing is comparing the theoretical calculation of the rotation curve with the actual measured rotation curve. It should be that the gas disc is actually rotating faster than predicted and therefore there is more mass there than you can see. I have already found a formula for the rotation curve, but I'm not sure if it makes sense.

I used the Jaffe profile for the mass distribution. I also don't know how it is possible to plot this predicted rotation curve without knowing the total mass and the scale radius "a". I would be very happy if someone could help me with this!
 
Astronomy news on Phys.org
Can we back up a bit? Ellipticals are pressure-supported, so a "rotation curve" in the sense of spirals really doesn't exist. When you describe a "rotating gas disk" it sounds like you are talking about spirals with the elliptical in the role of the bulge.

Can you give an example or two of such galaxies?
 
Oh, and one other thing: ellipticals are thought to have originated through mergers. It is far from clear how much, if any, of the dark matter component remains.
 
Vanadium 50 said:
Can we back up a bit? Ellipticals are pressure-supported, so a "rotation curve" in the sense of spirals really doesn't exist. When you describe a "rotating gas disk" it sounds like you are talking about spirals with the elliptical in the role of the bulge.

Can you give an example or two of such galaxies?
For example the elliptical galaxy NGC 5018 contains a rotating gas disk.
 
Thanks.

5018 is interacting with 5022, so you need to ensure that you are measuring what you think you are. I looked it up, and 5018 is quite the oddball. It's UV-poor, which implies little to no star formation, yet there have been three SNe seen in it.

You need to know the mass to predict the rotation curve. What you can do is look at the stars and the gas and show that that underpredicts the velocity. which would then allow you to invert the process and trace out the DM profile.
 
Sofia Piol said:
TL;DR Summary: rotation curve of a gas disk in an elliptical galaxy

Hello, I'm Sofia and new here! I'm working on a project in which I'm trying to show that dark matter exists. It's about an elliptical galaxy with a rotating gas disk.

What I'm doing is comparing the theoretical calculation of the rotation curve with the actual measured rotation curve. It should be that the gas disc is actually rotating faster than predicted and therefore there is more mass there than you can see. I have already found a formula for the rotation curve, but I'm not sure if it makes sense.

I used the Jaffe profile for the mass distribution. I also don't know how it is possible to plot this predicted rotation curve without knowing the total mass and the scale radius "a". I would be very happy if someone could help me with this!
Is there a reason not to use the much easier example of a spiral galaxy?

Also, if you are looking for a reference to cite, rather than just some people on the Internet, the go-to textbook for this topic is Galactic Dynamics by Binney & Tremaine, which is currently in its second edition. The hard copy is pricey at a bit more than $100 USD (although you could get a copy for free from many college libraries or via interlibrary loan), but the e-textbook version is a lot cheaper.
 
https://en.wikipedia.org/wiki/MoM-z14 Any photon with energy above 24.6 eV is going to ionize any atom. K, L X-rays would certainly ionize atoms. https://www.scientificamerican.com/article/whats-the-most-distant-galaxy/ The James Webb Space Telescope has found the most distant galaxy ever seen, at the dawn of the cosmos. Again. https://www.skyatnightmagazine.com/news/webb-mom-z14 A Cosmic Miracle: A Remarkably Luminous Galaxy at zspec = 14.44 Confirmed with JWST...

Similar threads

  • · Replies 1 ·
Replies
1
Views
757
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K