Is the Rotation of Spherical Harmonics Using Wigner Matrices Correct?

Like Tony Stark
Messages
182
Reaction score
6
Homework Statement
Rotate the spherical harmonic $$\ket{l=2, m=1}=Y_{2, 1}$$ an angle of π/4 about the y-axis.
Relevant Equations
$$\sum_{m'=-l}^{l} {d^{(l)}}_{m, m'} Y_{l, m'}$$
I tried using the Wigner matrices:

$$\sum_{m'=-2}^{2} {d^{(2)}}_{1m'} Y_{2; m'}={d^{(2)}}_{1 -2} Y_{2; -2} + {d^{(2)}}_{1 -1} Y_{2; -1} + ...= -\frac{1-\cos(\beta)}{2} \sin(\beta) \sqrt{\frac{15}{32 \pi}} \sin^2(\theta) e^{-i \phi} + ...$$

where $$\beta=\frac{\pi}{4}$$. But I don't know if this is ok since $$\beta$$ is an Euler angle while $$\theta$$ and $$\phi$$ are not. If this is not right, what should I do?
 
Last edited:
Physics news on Phys.org
The angle ##\beta## will go away as it is replaced by the value of the rotation, leaving a function of ##(\theta,\phi)##, which is what you want.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top