jimmycricket
- 115
- 2
Can anyone explain to me why the following operators are rotation operators:
<br /> \begin{align*}R_x(\theta) &= e^{-i\theta X/2}=\cos(\frac{\theta}{2})I-i\sin(\frac{\theta}{2})X=<br /> \left(\!\begin{array}{cc}\cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2})& \cos(\frac{\theta}{2}) \end{array}\!\right)\\<br /> R_y(\theta) &= e^{-i\theta Y/2}=\cos(\frac{\theta}{2})I-i\sin(\frac{\theta}{2})Y=\left(\!\begin{array}{cc}\cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})& \:\:\cos(\frac{\theta}{2}) \end{array}\!\right)\\<br /> R_z(\theta) &= e^{-i\theta Z/2}=\cos(\frac{\theta}{2})I-i\sin(\frac{\theta}{2})Z=\left(\!\begin{array}{cc}e^{-i\theta/2} & 0\\ 0 & e^{-i\theta/2} \end{array}\!\right)\end{align*}.
I understand that when considering the 2-d case, any complex number z can be rotated anti-clockwise by an angle \theta with the transformation z\mapsto ze^{i\theta}. This has no factor of 1/2 so where does it come from in the rotation operators?
<br /> \begin{align*}R_x(\theta) &= e^{-i\theta X/2}=\cos(\frac{\theta}{2})I-i\sin(\frac{\theta}{2})X=<br /> \left(\!\begin{array}{cc}\cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2})& \cos(\frac{\theta}{2}) \end{array}\!\right)\\<br /> R_y(\theta) &= e^{-i\theta Y/2}=\cos(\frac{\theta}{2})I-i\sin(\frac{\theta}{2})Y=\left(\!\begin{array}{cc}\cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})& \:\:\cos(\frac{\theta}{2}) \end{array}\!\right)\\<br /> R_z(\theta) &= e^{-i\theta Z/2}=\cos(\frac{\theta}{2})I-i\sin(\frac{\theta}{2})Z=\left(\!\begin{array}{cc}e^{-i\theta/2} & 0\\ 0 & e^{-i\theta/2} \end{array}\!\right)\end{align*}.
I understand that when considering the 2-d case, any complex number z can be rotated anti-clockwise by an angle \theta with the transformation z\mapsto ze^{i\theta}. This has no factor of 1/2 so where does it come from in the rotation operators?