MHB Roxy's question at Yahoo Answers regarding finding the area between two curves

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Area Curves
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus finding the area between the curves on the interval?

find the area between the curves on the interval [0,1]. y=sin3x and y=cos2x

please show me the steps thank you !

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Roxy,

The area in question can be found with:

$$A=\int_0^1 \left|\sin(3x)-\cos(2x) \right|\,dx$$

Here is a graph of the two curves over the given interval:

View attachment 2239

We need to find where the two curves intersect so that we may split the integral into two integral where the integrand of each contains the upper curve minus the lower curve. So, equating the two curves, we have:

$$\sin(3x)=\cos(2x)$$

Applying a triple-angle identity for sine on the left and a double-angle identity for cosine on the right, we have:

$$3\sin(x)-4\sin^3(x)=1-2\sin^2(x)$$

We may then arrange this as:

$$4\sin^3(x)-2\sin^2(x)-3\sin(x)+1=0$$

Factor:

$$\left(\sin(x)-1 \right)\left(4\sin^2(x)+2\sin(x)+1 \right)=0$$

The only root that results in $x$ being in the given interval comes from:

$$\sin(x)=\frac{-1+\sqrt{5}}{4}\implies x=\frac{\pi}{10}$$

And so, we may state:

$$A=\int_0^{\frac{\pi}{10}} \cos(2x)-\sin(3x)\,dx+\int_{\frac{\pi}{10}}^1 \sin(3x)-\cos(2x)\,dx$$

Applying the FTOC, we obtain:

$$A=\left[\frac{1}{2}\sin(2x)+\frac{1}{3}\cos(3x) \right]_0^{\frac{\pi}{10}}-\left[\frac{1}{3}\cos(3x)+\frac{1}{2}\sin(2x) \right]_{\frac{\pi}{10}}^1$$

$$A=\frac{1}{2}\sin\left(\frac{\pi}{5} \right)+\frac{1}{3}\cos\left(\frac{3\pi}{10} \right)-\frac{1}{3}-\frac{1}{3}\cos(3)-\frac{1}{2}\sin(2)+ \frac{1}{3}\cos\left(\frac{3\pi}{10} \right)+\frac{1}{2}\sin\left(\frac{\pi}{5} \right)$$

Combine like terms:

$$A=\sin\left(\frac{\pi}{5} \right)+\frac{2}{3}\cos\left(\frac{3\pi}{10} \right)-\frac{1}{3}-\frac{1}{3}\cos(3)-\frac{1}{2}\sin(2)$$

$$A=\frac{1}{12}\left(5\sqrt{2\left(5-\sqrt{5} \right)}-\left(6\sin(2)+4\cos(3)+4 \right) \right)\approx0.521657539274763$$
 

Attachments

  • roxy.jpg
    roxy.jpg
    23.5 KB · Views: 94
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top