Rudin 2.41, why does an unbounded infinite set have no limit points?

Click For Summary
Rudin's statement in problem 2.41 asserts that an unbounded infinite set, specifically a sequence defined by points xn where |xn| > n, has no limit points in ℝk. The confusion arises from interpreting the set S as containing all points greater than a certain n, rather than recognizing it as a discrete sequence of distinct points. Each point in the sequence is separated by a distance, preventing any single point from being a limit point since no neighborhood can contain infinitely many points from S. This distinction clarifies that while S is infinite, it does not form a connected set, thus lacking limit points. Understanding this definition resolves the apparent contradiction in Rudin's assertion.
EdMel
Messages
13
Reaction score
0
Please let me know if this should be in the Homework section.

Part of Rudin 2.41 says that for a set E in ℝk... "If E is not bounded, then E contains points xn with |xn|>n (n = 1, 2, 3,...)." I can understand the argument this far. I do not get the next sentence "The set S consisting of these points xn is infinite and clearly has no limit point in ℝk". I can understand that S is infinite but to me S clearly does have limit points in ℝk. For example, take the real line, n = 1, S to be the set of points greater than 1 and ε>0. Every neighborhood of p = 2 with radius ε would contain a point in S making p a limit point. This contradicts what Rudin states as 'clearly'. What am I missing here?

Thanks,

Ed
 
Physics news on Phys.org
It's not true that an unbounded infinite set has no limit points.

But it's not an arbitrary such set. It's a sequence, so a countable set. A finite set has no limit points. So, any finite subset has no limit points and it's going off to infinity. If there were a limit point, that would contradict the fact that each x_n is bigger than n because there would be some subsequence that converges. A convergent sequence is bounded.
 
EdMel said:
For example, take the real line, n = 1, S to be the set of points greater than 1 and ε>0. Every neighborhood of p = 2 with radius ε would contain a point in S making p a limit point. This contradicts what Rudin states as 'clearly'. What am I missing here?

Thanks,

Ed

Pretty much what the previous poster said, but you're missing the point that rudin is not defining S as ALL points greater than some n, but rather each x_n is ONE point greater than n: in other words, an infinite sequence.

Rudin defines this sequence using distinct points, thus while there are an infinite amount, the points are "discrete" objects, if you will. They do not form a connected set, there is distance between each one. Hence, there is no point such that EVERY neighborhood contains a point of the sequence.
 
I get it now. Back in 2.7 he defines a sequence and whenever you see x_n for (n=1, 2, 3,...) you should read this as a sequence.

Thanks.
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
8K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
10K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K