In Rudin's Principles of Mathematical Analysis, Theorem 2.43 is that all nonempty perfect sets in R^k are uncountable. The proof Rudin gives goes like this:(adsbygoogle = window.adsbygoogle || []).push({});

Let P be a nonempty perfect set in R^k. Since P has limit points, P is infinite. Suppose P is countable and denote the points of P by x_1, x_2, x_3, .... We shall construct a sequence of neighborhoods {V_n} as follows.

Let V_1 be any neighborhood of x_1. If V_1 consists of all y in R^k such that |y-x_1| < r, the closure closure(V_1) is the set of all y in R^k such that |y-x_1| </= r.

Suppose V_n has been constructed, so that V_n intersect P is not empty. Since every point of P is a limit point of P, there is a neighborhood V_(n+1) such that (i) closure[v(n+1)] is a subset of V_n, (ii) x_n is not an element of closure[V(n+1)], (iii) V_(n+1) intersect P is not empty. By (iii) v_(n+1) satisfies our induction hypothesis, and the construction can proceed.

Put K_n = closure(V_n) intersect P. Since closure(V_n) is closed and bounded, closure(V_n) is compact. Since x_n is not an element of K_(n+1), no point of P lies in the intersection from 1 to infinity of K_n. Since K_n is a subset of P this implies that the intersection from 1 to infinity of K_n is empty. But each K_n is not empty and by (iii), and K_n contains K_(n+1), by (i); this contradicts the Corollary to theorem 2.36.

For reference the corollary to theorem 2.36 is:

If {K_n} is a sequence of nonempty compact sets such that K_n contains K_(n+1) (n = 1, 2, 3, ...), then the intersection from 1 to infinity of K_n is not empty.

My question is this: Rudin first assumes P is countable and that the elements of P are x_1, x_2, x_3, .... But it seems to me that when he specifies conditions for each x_n greater than x_1, these elements are no longer arbitrary, and no longer illustrate the general case of assuming P is countable. Where am I going wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof that perfect sets in R^k are uncountable

Loading...

Similar Threads for Proof perfect sets |
---|

I N-th dimensional Riemann integral |

B Proof of a limit rule |

B Proof of quotient rule using Leibniz differentials |

B Don't follow one small step in proof |

**Physics Forums | Science Articles, Homework Help, Discussion**