Hi, everyone:(adsbygoogle = window.adsbygoogle || []).push({});

I have been trying to show this using the following:

Given f: Y-->X

IF S^n ~ Y_f(x) , then S^n deformation-retracts to Y , and ( not sure of this)

also is homeomorphic to Y (I know Y_f(x) is homotopic to Y ) . But ( so I am

branching out into more sub-problems) S^n is not homeomorphic to any of its

subspaces : if f:S^n -->Z , Z<S^n is a homeomorphism, then Z is compact,

and, by Invariance of Domain, Z is also open. Then , by connectedness, Z=S^n.

Anyway. I also have --tho I am not sure if this helps -- that , I think that

the only mapping cylinder that is a manifold is the identity i: M-->M , with

M a manifold. If this is true, this means that f:X-->Y as above has X=Y =S^n

Any Other Ideas?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# S^n not a mapping cylinder. S^n and homeom. subspaces

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**