MHB ?'s question at Yahoo Answers regarding Laplace Transforms

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question.

Can you show the steps of this differential equations problem? said:
Find laplace {f(t)} by first using a trigonometric identity. (Write your answer as a function of s.)f(t)= sin(3t)cos(3t)the final answer is:
3/(s^(2)+36)

Here is a link to the question:

Can you show the steps of this differential equations problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello ?,

We first use the trig identity $\sin(2\theta)=2\sin\theta\cos\theta$ to rewrite $\sin(3t)\cos(3t)$; in particular, we have that $\sin(3t)\cos(3t)=\frac{1}{2}\sin(2\cdot(3t)) =\frac{1}{2}\sin(6t)$.

Now, I'm not sure exactly what formulas you can use, but if you can use certain formulas for Laplace Transforms, then you're done since we know $\mathcal{L}\left\{\frac{1}{2}\sin(6t)\right\} =\frac{1}{2}\mathcal{L}\{\sin(6t)\} =\dfrac{1}{2}\cdot\dfrac{6}{s^2+6^2} =\dfrac{3}{s^2+36}$.

Otherwise, we need to compute the Laplace Transform by first principles; to make this easier for us, let us first compute $\mathcal{L}\{e^{at}\}$ where $a\in\mathbb{R}$.

\[\begin{aligned}\mathcal{L}\{e^{at}\} &= \int_0^{\infty}e^{-st}e^{at}\,dt\\ &= \int_0^{\infty}e^{-(s-a)t}\,dt\\ &= \lim_{b\to\infty} \left.\left[-\frac{e^{-(s-a)t}}{s-a}\right]\right|_{0}^{b}\\ &= \lim_{b\to\infty} -\frac{e^{-(s-a)b}}{s-a} + \frac{1}{s-a}\end{aligned}\]
Note that $\displaystyle\lim_{b\to\infty}-\frac{e^{-(s-a)b}}{s-a}=0$ if $s>a$. Thus, we have that $\mathcal{L}\{e^{at}\}=\dfrac{1}{s-a}$ for $s>a$.

Now, how does this help us with computing $\mathcal{L}\{\sin(6t)\}$? Well, we know from complex variables that $\sin(kx)=\dfrac{e^{ikx}-e^{-ikx}}{2i}$, so it follows that
\[\begin{aligned}\mathcal{L}\{\sin(6t)\} &= \frac{1}{2i}\left[\mathcal{L}\left\{e^{6it}\right\} - \mathcal{L}\left\{e^{-6it}\right\}\right] \\ &= \frac{1}{2i}\left[\frac{1}{s-6i} - \frac{1}{s+6i}\right]\\ &= \frac{1}{2i}\left[\frac{12i}{s^2-(6i)^2}\right] \\ &= \frac{6}{s^2+36}\end{aligned}\]
And thus $\mathcal{L}\{\sin(3t)\cos(3t)\} =\frac{1}{2}\mathcal{L}\{\sin(6t)\}=\dfrac{3}{s^2+36}$.

I hope this makes sense!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top