MHB ?'s question at Yahoo Answers regarding Laplace Transforms

Click For Summary
To find the Laplace Transform of f(t) = sin(3t)cos(3t), the trigonometric identity sin(2θ) = 2sin(θ)cos(θ) is applied, resulting in f(t) being rewritten as (1/2)sin(6t). Using the known Laplace Transform of sin(kt), the transform of (1/2)sin(6t) is calculated as (3/(s^2 + 36)). The discussion also includes a derivation of the Laplace Transform from first principles, confirming the final result. The steps provided clarify the process for computing the Laplace Transform effectively.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question.

Can you show the steps of this differential equations problem? said:
Find laplace {f(t)} by first using a trigonometric identity. (Write your answer as a function of s.)f(t)= sin(3t)cos(3t)the final answer is:
3/(s^(2)+36)

Here is a link to the question:

Can you show the steps of this differential equations problem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello ?,

We first use the trig identity $\sin(2\theta)=2\sin\theta\cos\theta$ to rewrite $\sin(3t)\cos(3t)$; in particular, we have that $\sin(3t)\cos(3t)=\frac{1}{2}\sin(2\cdot(3t)) =\frac{1}{2}\sin(6t)$.

Now, I'm not sure exactly what formulas you can use, but if you can use certain formulas for Laplace Transforms, then you're done since we know $\mathcal{L}\left\{\frac{1}{2}\sin(6t)\right\} =\frac{1}{2}\mathcal{L}\{\sin(6t)\} =\dfrac{1}{2}\cdot\dfrac{6}{s^2+6^2} =\dfrac{3}{s^2+36}$.

Otherwise, we need to compute the Laplace Transform by first principles; to make this easier for us, let us first compute $\mathcal{L}\{e^{at}\}$ where $a\in\mathbb{R}$.

\[\begin{aligned}\mathcal{L}\{e^{at}\} &= \int_0^{\infty}e^{-st}e^{at}\,dt\\ &= \int_0^{\infty}e^{-(s-a)t}\,dt\\ &= \lim_{b\to\infty} \left.\left[-\frac{e^{-(s-a)t}}{s-a}\right]\right|_{0}^{b}\\ &= \lim_{b\to\infty} -\frac{e^{-(s-a)b}}{s-a} + \frac{1}{s-a}\end{aligned}\]
Note that $\displaystyle\lim_{b\to\infty}-\frac{e^{-(s-a)b}}{s-a}=0$ if $s>a$. Thus, we have that $\mathcal{L}\{e^{at}\}=\dfrac{1}{s-a}$ for $s>a$.

Now, how does this help us with computing $\mathcal{L}\{\sin(6t)\}$? Well, we know from complex variables that $\sin(kx)=\dfrac{e^{ikx}-e^{-ikx}}{2i}$, so it follows that
\[\begin{aligned}\mathcal{L}\{\sin(6t)\} &= \frac{1}{2i}\left[\mathcal{L}\left\{e^{6it}\right\} - \mathcal{L}\left\{e^{-6it}\right\}\right] \\ &= \frac{1}{2i}\left[\frac{1}{s-6i} - \frac{1}{s+6i}\right]\\ &= \frac{1}{2i}\left[\frac{12i}{s^2-(6i)^2}\right] \\ &= \frac{6}{s^2+36}\end{aligned}\]
And thus $\mathcal{L}\{\sin(3t)\cos(3t)\} =\frac{1}{2}\mathcal{L}\{\sin(6t)\}=\dfrac{3}{s^2+36}$.

I hope this makes sense!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K