MHB S4.854.13.5.47 Find symmetric equations, angle between the planes

Click For Summary
The discussion focuses on finding the symmetric equations for the line of intersection of two planes defined by the equations j + y - z = 2 and 3x - 4y + 5z = 6. The symmetric equations derived are x - 2 = y / (-8) = z / (-7). Additionally, the angle between the planes is calculated using the dot product of their normal vectors, resulting in an angle of either 119° or 61°, indicating that the angle is obtuse. The importance of recognizing sign errors in calculations is emphasized, as they can lead to incorrect assumptions about the angle's nature. Overall, the discussion highlights the geometric relationships between intersecting planes and the significance of accurate mathematical operations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s4.854.13.5.47}$
$\textsf{a. Find symmeteric equations for the line of intersection of planes}\\$
$\textsf{b. Find the angle between the planes}\\$

\begin{align}\displaystyle
j+y-z&=2 \\
3x-4y+5z &=6
\end{align}
\begin{align}\displaystyle
n_1&=\langle 1,1,-1\rangle\\
n_2&=\langle 3,-4,+5\rangle
\end{align}

\begin{align}
\displaystyle
\frac{n_1\cdot n_2}{|n_1||n_2|}
&=\frac{3(1)+(-4)(1)+5(-1)}{\sqrt{3}\sqrt{50}}\\
&=\frac{\sqrt{6}}{5}\\
\cos^{-1}\left({\frac{\sqrt{6}}{5}}\right)
&=119^o \textit{or} \, 61^o
\end{align}

\begin{align}
\begin{bmatrix}
i & j & k\\
1 &1 &-1\\
3 &-4 &5
\end{bmatrix} &=\textbf{i-8j-7k}
\end{align}

$\textsf{the symmetric equations are:}$
\begin{align}
x-2&=\frac{y}{(-8)}=\frac{z}{(-7)}
\end{align}

suggestions?(Smirk)
 
Last edited:
Physics news on Phys.org
karush said:
$\tiny{s4.854.13.5.47}$
$\textsf{a. Find symmeteric equations for the line of intersection of planes}\\$
$\textsf{b. Find the angle between the planes}\\$

\begin{align}\displaystyle
j+y-z&=2 \\
3x-4y+5z &=6
\end{align}
\begin{align}\displaystyle
n_1&=\langle 1,1,-1\rangle\\
n_2&=\langle 3,-4,+5\rangle
\end{align}

\begin{align}
\displaystyle
\frac{n_1\cdot n_2}{|n_1||n_2|}
&=\frac{3(1)+(-4)(1)+5(-1)}{\sqrt{3}\sqrt{50}}\\
&=\frac{\sqrt{6}}{5}\\
\cos^{-1}\left({\frac{\sqrt{6}}{5}}\right)
&=119^o \textit{or} \, 61^o
\end{align}

\begin{align}
\begin{bmatrix}
i & j & k\\
1 &1 &-1\\
3 &-4 &5
\end{bmatrix} &=\textbf{i-8j-7k}
\end{align}

$\textsf{the symmetric equations are:}$
\begin{align}
x-2&=\frac{y}{(-8)}=\frac{z}{(-7)}
\end{align}

suggestions?(Smirk)

Notice that

$\displaystyle \begin{align*} -\frac{6}{\sqrt{3}\,\sqrt{50}} &= -\frac{6}{5\,\sqrt{3}\,\sqrt{2}} \\ &= -\frac{6}{5\,\sqrt{6}} \\ &= -\frac{6\,\sqrt{6}}{5 \cdot 6} \\ &= -\frac{\sqrt{6}}{5} \end{align*}$

and when you end up with $\displaystyle \begin{align*} \cos{ \left( \theta \right) } < 0 \end{align*}$ we can assume that the angle will be obtuse.
 
now I'm beginning to believe that sign errors are the most common mistake...😰
 
Prove It said:
Notice that

$\displaystyle \begin{align*} -\frac{6}{\sqrt{3}\,\sqrt{50}} &= -\frac{6}{5\,\sqrt{3}\,\sqrt{2}} \\ &= -\frac{6}{5\,\sqrt{6}} \\ &= -\frac{6\,\sqrt{6}}{5 \cdot 6} \\ &= -\frac{\sqrt{6}}{5} \end{align*}$

and when you end up with $\displaystyle \begin{align*} \cos{ \left( \theta \right) } < 0 \end{align*}$ we can assume that the angle will be obtuse.

there are 2 angles of an intersecting plane...they are supplementary
 
karush said:
there are 2 angles of an intersecting plane...they are supplementary

I'm not saying they're not, I'm saying what you should be EXPECTING for your answer...
 

Similar threads

Replies
5
Views
4K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K