S4.854.13.5.47 Find symmetric equations, angle between the planes

Click For Summary

Discussion Overview

The discussion revolves around finding the symmetric equations for the line of intersection of two planes and determining the angle between those planes. It includes mathematical reasoning and exploration of potential errors in calculations.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the symmetric equations for the line of intersection as \( x-2=\frac{y}{(-8)}=\frac{z}{(-7)} \) and provides calculations for the angle between the planes using the dot product of their normal vectors.
  • Another participant questions the sign errors in the calculations and suggests that such errors are common, indicating a potential misunderstanding of the angle's nature.
  • A later reply emphasizes that there are two angles formed by intersecting planes, which are supplementary, suggesting that the obtuse angle should be expected in the context of the discussion.

Areas of Agreement / Disagreement

Participants express differing views on the interpretation of the angle between the planes and the presence of sign errors in calculations. The discussion remains unresolved regarding the implications of these angles and the correctness of the calculations.

Contextual Notes

There are indications of missing assumptions regarding the interpretation of angles and potential errors in the mathematical steps presented. The discussion does not resolve these uncertainties.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s4.854.13.5.47}$
$\textsf{a. Find symmeteric equations for the line of intersection of planes}\\$
$\textsf{b. Find the angle between the planes}\\$

\begin{align}\displaystyle
j+y-z&=2 \\
3x-4y+5z &=6
\end{align}
\begin{align}\displaystyle
n_1&=\langle 1,1,-1\rangle\\
n_2&=\langle 3,-4,+5\rangle
\end{align}

\begin{align}
\displaystyle
\frac{n_1\cdot n_2}{|n_1||n_2|}
&=\frac{3(1)+(-4)(1)+5(-1)}{\sqrt{3}\sqrt{50}}\\
&=\frac{\sqrt{6}}{5}\\
\cos^{-1}\left({\frac{\sqrt{6}}{5}}\right)
&=119^o \textit{or} \, 61^o
\end{align}

\begin{align}
\begin{bmatrix}
i & j & k\\
1 &1 &-1\\
3 &-4 &5
\end{bmatrix} &=\textbf{i-8j-7k}
\end{align}

$\textsf{the symmetric equations are:}$
\begin{align}
x-2&=\frac{y}{(-8)}=\frac{z}{(-7)}
\end{align}

suggestions?(Smirk)
 
Last edited:
Physics news on Phys.org
karush said:
$\tiny{s4.854.13.5.47}$
$\textsf{a. Find symmeteric equations for the line of intersection of planes}\\$
$\textsf{b. Find the angle between the planes}\\$

\begin{align}\displaystyle
j+y-z&=2 \\
3x-4y+5z &=6
\end{align}
\begin{align}\displaystyle
n_1&=\langle 1,1,-1\rangle\\
n_2&=\langle 3,-4,+5\rangle
\end{align}

\begin{align}
\displaystyle
\frac{n_1\cdot n_2}{|n_1||n_2|}
&=\frac{3(1)+(-4)(1)+5(-1)}{\sqrt{3}\sqrt{50}}\\
&=\frac{\sqrt{6}}{5}\\
\cos^{-1}\left({\frac{\sqrt{6}}{5}}\right)
&=119^o \textit{or} \, 61^o
\end{align}

\begin{align}
\begin{bmatrix}
i & j & k\\
1 &1 &-1\\
3 &-4 &5
\end{bmatrix} &=\textbf{i-8j-7k}
\end{align}

$\textsf{the symmetric equations are:}$
\begin{align}
x-2&=\frac{y}{(-8)}=\frac{z}{(-7)}
\end{align}

suggestions?(Smirk)

Notice that

$\displaystyle \begin{align*} -\frac{6}{\sqrt{3}\,\sqrt{50}} &= -\frac{6}{5\,\sqrt{3}\,\sqrt{2}} \\ &= -\frac{6}{5\,\sqrt{6}} \\ &= -\frac{6\,\sqrt{6}}{5 \cdot 6} \\ &= -\frac{\sqrt{6}}{5} \end{align*}$

and when you end up with $\displaystyle \begin{align*} \cos{ \left( \theta \right) } < 0 \end{align*}$ we can assume that the angle will be obtuse.
 
now I'm beginning to believe that sign errors are the most common mistake...😰
 
Prove It said:
Notice that

$\displaystyle \begin{align*} -\frac{6}{\sqrt{3}\,\sqrt{50}} &= -\frac{6}{5\,\sqrt{3}\,\sqrt{2}} \\ &= -\frac{6}{5\,\sqrt{6}} \\ &= -\frac{6\,\sqrt{6}}{5 \cdot 6} \\ &= -\frac{\sqrt{6}}{5} \end{align*}$

and when you end up with $\displaystyle \begin{align*} \cos{ \left( \theta \right) } < 0 \end{align*}$ we can assume that the angle will be obtuse.

there are 2 angles of an intersecting plane...they are supplementary
 
karush said:
there are 2 angles of an intersecting plane...they are supplementary

I'm not saying they're not, I'm saying what you should be EXPECTING for your answer...
 

Similar threads

Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K