S8.5.1.64 values of m for region

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on determining the values of m for which the line \(y=mx\) and the curve \(y=\frac{x}{x^2+1}\) enclose a region. It is established that the line must have a slope \(0 < m < 1\) to create closed symmetrical regions in quadrants I and III. The area of the enclosed region is calculated using the integral \(A = 2 \int_0^{\sqrt{\frac{1}{m}-1}} \left(\frac{x}{x^2+1} - mx\right) \, dx\), resulting in the expression \(A = m - (1+\ln{m})\).

PREREQUISITES
  • Understanding of calculus, specifically integration techniques.
  • Familiarity with odd functions and symmetry in graphs.
  • Knowledge of asymptotic behavior of functions.
  • Ability to solve equations involving rational functions.
NEXT STEPS
  • Study the properties of odd functions and their graphical representations.
  • Learn integration techniques for calculating areas between curves.
  • Explore the concept of asymptotes in rational functions.
  • Investigate the implications of slope in linear equations and their intersections with curves.
USEFUL FOR

Mathematicians, calculus students, educators, and anyone interested in the geometric interpretation of functions and their intersections.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s8.5.1.64\p364}$

For what values of m do the line $y=mx$ and the curve $y=\dfrac{x}{x^2+1}$ enclose a region.
Find the area of the regionok I could only estimate this by observation but it looks $m\ne 1$
not sure how you solve by calculation
 
Physics news on Phys.org
both functions are odd (symmetric to the origin) and pass through the origin. the curve is also asymptotic to $y=0$.

$\dfrac{d}{dx} \bigg[\dfrac{x}{x^2+1} \bigg] = \dfrac{1-x^2}{(x^2+1)^2}$

at the origin, the slope of the curve equals 1, therefore $y=x$ would be tangent to the curve.

so, to intersect the curve to form closed symmetrical regions in quadrants I and III, the slope of the line must be $0 < m < 1$

AA1F990F-9414-43A3-9E8E-C528ADB8951F.jpeg
 
Last edited by a moderator:
ok that helped a lot
 
karush said:
$\tiny{s8.5.1.64\p364}$

For what values of m do the line $y=mx$ and the curve $y=\dfrac{x}{x^2+1}$ enclose a region.
Find the area of the regionok I could only estimate this by observation but it looks $m\ne 1$
not sure how you solve by calculation
Since the problem says "enclose a region" I would just see where they intersect:
$mx= \frac{x}{x^2+ 1}$
An obvious solution is x= 0. If x is not 0 we can divide by x to get $m= \frac{1}{x^2+ 1}$. Multiply both sides by $x^2+ 1$ to get $m(x^2+ 1)= 1$. If m= 0 that is impossible and as long as m is not 0, divide both sides by m to get $x^2+ 1= \frac{1}{m}$. Subtract $1$: $x^2= \frac{1}{m}- 1$. If m> 1 there is no such x. If m< 1 $x= \pm\sqrt{\frac{1}{m}- 1}= \pm\sqrt{\frac{1- m}{m}}$ so the lines cross in three points and enclose two regions. The answer is "all m less than 1" not "all m except 1".
 
Last edited:
karush said:
$\tiny{s8.5.1.64\p364}$

For what values of m do the line $y=mx$ and the curve $y=\dfrac{x}{x^2+1}$ enclose a region.

Find the area of the region

for $x > 0$ and $0 < m < 1$ ...

$mx = \dfrac{x}{x^2+1} \implies x^2+1 = \dfrac{1}{m} \implies x = \sqrt{\dfrac{1}{m} - 1}$

Sum of the areas of both regions in quads I and III ...

$$A = 2 \int_0^{\sqrt{\frac{1}{m}-1}} \dfrac{x}{x^2+1} - mx \, dx = m - (1+\ln{m})$$
 
skeeter said:
both functions are odd (symmetric to the origin) and pass through the origin. the curve is also asymptotic to $y=0$.

$\dfrac{d}{dx} \bigg[\dfrac{x}{x^2+1} \bigg] = \dfrac{1-x^2}{(x^2+1)^2}$

at the origin, the slope of the curve equals 1, therefore $y=x$ would be tangent to the curve.

so, to intersect the curve to form closed symmetrical regions in quadrants I and III, the slope of the line must be $0 < m < 1$

View attachment 10706

well pretty valuable to know that...
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
4K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K