Salt bridge and electical field

AI Thread Summary
In a Galvanic cell, the presence of a salt bridge is essential for maintaining electrical neutrality between the two half-cells, preventing the buildup of an electric field. This leads to the conclusion that, ideally, the electrical potential difference between the solutions in the half-cells is zero. The discussion also touches on the concept that the solutions and the salt bridge act as conductors, where the electric field within a conductor is zero, ensuring equilibrium. Furthermore, it is possible to calculate the difference in electrochemical potential between the solutions, focusing on the solutions rather than the electrodes. The conversation highlights that Galvanic cells can be configured in various ways, including setups with two electrodes in a single electrolyte solution, which can enhance voltage measurements by minimizing junction potential errors.
wnvl2
Messages
62
Reaction score
14
Is it correct that a salt bridge in a Galvanic cell makes that there is no electrical field between the solutions of the two hallf cells? Does that mean that the electrical potential (I do not write electrochemical potential) between both solutions is zero in an ideal world?

Is it also possible to calculate the difference in electrochemical potential between both solutions. I mean the solutions not the electrodes in the solutions. How should that be done?
 
Last edited:
Chemistry news on Phys.org
wnvl2 said:
Is it correct that a salt bridge in a Galvanic cell makes that there is no electrical field between the solutions of the two hallf cells? Does that mean that the electrical potential (I do not write electrochemical potential) between both solutions is zero in an ideal world?
The solutions and salt bridge are 'conductors', except + and - ions carry charge.

In general "The electric field inside the conductor is zero. (Any net electric field in the conductor would cause charge to move since it is abundant and mobile. This violates the condition of equilibrium: net force = 0.)" http://hyperphysics.phy-astr.gsu.edu/hbase/electric/gausur.html#c2

See the discussion here:
https://chem.libretexts.org/Courses...ELECTRO-CHEMISTRY/17.1:_Electrochemical_Cells
Galvanic cells can have arrangements other than the examples we have seen so far (with a salt bridge). For example, the voltage produced by a redox reaction can be measured more accurately using two electrodes immersed in a single beaker containing an electrolyte that completes the circuit. This arrangement reduces errors caused by resistance to the flow of charge at a boundary, called the junction potential.
 
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top