MHB Saqifriends's Question from Math Help Forum

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
AI Thread Summary
To find a standard basis vector that can be added to the set {v1, v2} to create a basis for R3, the determinants of matrices formed with standard basis vectors and the given vectors are calculated. The determinants for the vectors (1,0,0) and (0,1,0) show they are linearly independent from {v1, v2}, while the determinant for (0,0,1) is zero, indicating linear dependence. Both sets { (1,0,0), v1, v2 } and { (0,1,0), v1, v2 } span R3, confirming they are valid bases. Thus, either (1,0,0) or (0,1,0) can be added to the set to form a basis for R3.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Title: Find a standard basis vector

saqifriends said:
Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for R3 where;
v1 = (-1, 2, 3), v2 = (1, -2, -2)

Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
 
Mathematics news on Phys.org
Sudharaka said:
Title: Find a standard basis vector
Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
Correct! one has to first solve the simultaneous equation:
##x=α-β+ϒ##
##y=2β-2ϒ##
##z=3β-2ϒ##

##x=α-β+ϒ⇒α=x+β-ϒ##
and from
##y=2β-2ϒ##⇒
##\dfrac{y}{2}##=##β-ϒ##
on substituting into
##α=x+β-ϒ##
##α=x+\dfrac{y}{2}## as shown...the other constants can be found in a similar approach (by use of elimination method).
 
  • Like
Likes Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top