MHB Saqifriends's Question from Math Help Forum

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
Click For Summary
To find a standard basis vector that can be added to the set {v1, v2} to create a basis for R3, the determinants of matrices formed with standard basis vectors and the given vectors are calculated. The determinants for the vectors (1,0,0) and (0,1,0) show they are linearly independent from {v1, v2}, while the determinant for (0,0,1) is zero, indicating linear dependence. Both sets { (1,0,0), v1, v2 } and { (0,1,0), v1, v2 } span R3, confirming they are valid bases. Thus, either (1,0,0) or (0,1,0) can be added to the set to form a basis for R3.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Title: Find a standard basis vector

saqifriends said:
Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for R3 where;
v1 = (-1, 2, 3), v2 = (1, -2, -2)

Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
 
Mathematics news on Phys.org
Sudharaka said:
Title: Find a standard basis vector
Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
Correct! one has to first solve the simultaneous equation:
##x=α-β+ϒ##
##y=2β-2ϒ##
##z=3β-2ϒ##

##x=α-β+ϒ⇒α=x+β-ϒ##
and from
##y=2β-2ϒ##⇒
##\dfrac{y}{2}##=##β-ϒ##
on substituting into
##α=x+β-ϒ##
##α=x+\dfrac{y}{2}## as shown...the other constants can be found in a similar approach (by use of elimination method).
 
  • Like
Likes Greg Bernhardt
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K