MHB Saqifriends's Question from Math Help Forum

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Title: Find a standard basis vector

saqifriends said:
Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for R3 where;
v1 = (-1, 2, 3), v2 = (1, -2, -2)

Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
 
Mathematics news on Phys.org
Sudharaka said:
Title: Find a standard basis vector
Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
Correct! one has to first solve the simultaneous equation:
##x=α-β+ϒ##
##y=2β-2ϒ##
##z=3β-2ϒ##

##x=α-β+ϒ⇒α=x+β-ϒ##
and from
##y=2β-2ϒ##⇒
##\dfrac{y}{2}##=##β-ϒ##
on substituting into
##α=x+β-ϒ##
##α=x+\dfrac{y}{2}## as shown...the other constants can be found in a similar approach (by use of elimination method).
 
  • Like
Likes Greg Bernhardt
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top