Saqifriends's Question from Math Help Forum

  • Context: MHB 
  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Forum
Click For Summary
SUMMARY

The discussion focuses on finding a standard basis vector that can be added to the set {v1, v2} to form a basis for R3, where v1 = (-1, 2, 3) and v2 = (1, -2, -2). The participants demonstrate that the vectors (1, 0, 0) and (0, 1, 0) are linearly independent with the given vectors by calculating their determinants. Both sets { (1, 0, 0), (-1, 2, 3), (1, -2, -2) } and { (0, 1, 0), (-1, 2, 3), (1, -2, -2) } span R3, confirming they are valid bases.

PREREQUISITES
  • Understanding of linear independence and spanning sets in vector spaces
  • Familiarity with determinants and their properties
  • Basic knowledge of R3 and standard basis vectors
  • Ability to solve simultaneous equations in three variables
NEXT STEPS
  • Study the properties of determinants in linear algebra
  • Learn about vector spaces and basis concepts in R3
  • Explore methods for solving simultaneous equations, including elimination
  • Investigate applications of linear independence in higher dimensions
USEFUL FOR

Students and educators in mathematics, particularly those studying linear algebra, vector spaces, and determinants. This discussion is beneficial for anyone looking to deepen their understanding of basis vectors in R3.

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Title: Find a standard basis vector

saqifriends said:
Find a standard basis vector that can be added to the set {v1, v2} to produce a basis for R3 where;
v1 = (-1, 2, 3), v2 = (1, -2, -2)

Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
 
  • Like
Likes   Reactions: chwala
Physics news on Phys.org
Sudharaka said:
Title: Find a standard basis vector
Hi saqifriends, :)

We can use the determinants to see which standard basis vectors are linearly independent with the given two vectors.

\[\begin{vmatrix} 1 & 0 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 1 & 0\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}\neq 0\]

\[\begin{vmatrix} 0 & 0 & 1\\-1 & 2 & 3\\1 & -2 & -2 \end{vmatrix}=0\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are linearly independent sets.

Now we shall show that, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Take any, \((x,y,z)\in\Re^{3}\).

\[(x,y,z)=\alpha(1,0,0)+\beta(-1, 2, 3)+\gamma(1, -2, -2)\]

\[\Rightarrow \alpha=x+\frac{y}{2},\,\beta=z-y,\,\gamma=z-\frac{3\,y}{2}\]

\[\Rightarrow \alpha,\,\beta,\,\gamma\in\Re\]

Therefore, \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Similarly it could be shown that, \(\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) spans \(\Re^{3}\).

Hence both \(\{(1,0,0),\,(-1, 2, 3),\,(1, -2, -2)\}\mbox{ and }\{(0,1,0),\,(-1, 2, 3),\,(1, -2, -2)\}\) are bases of \(\Re^{3}\).

Kind Regards,
Sudharaka.
Correct! one has to first solve the simultaneous equation:
##x=α-β+ϒ##
##y=2β-2ϒ##
##z=3β-2ϒ##

##x=α-β+ϒ⇒α=x+β-ϒ##
and from
##y=2β-2ϒ##⇒
##\dfrac{y}{2}##=##β-ϒ##
on substituting into
##α=x+β-ϒ##
##α=x+\dfrac{y}{2}## as shown...the other constants can be found in a similar approach (by use of elimination method).
 
  • Like
Likes   Reactions: Greg Bernhardt

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K