Sava's question via email about integration with partial fractions.

Click For Summary
SUMMARY

The discussion focuses on the integration of the function $\displaystyle \int{\frac{x^2}{\left( x - 1 \right) ^2 \, \left( x - 2 \right) } \,\mathrm{d}x}$. The correct partial fraction decomposition is established as $\displaystyle \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2}$. The values for A, B, and C are determined to be $A = -3$, $B = -1$, and $C = 4$. The final result of the integration is $\displaystyle -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C$.

PREREQUISITES
  • Understanding of partial fraction decomposition in calculus.
  • Familiarity with integration techniques involving logarithmic functions.
  • Knowledge of handling repeated roots in polynomial expressions.
  • Basic algebraic manipulation skills for solving equations.
NEXT STEPS
  • Study advanced techniques in partial fraction decomposition for higher-order polynomials.
  • Learn about integration techniques involving trigonometric and exponential functions.
  • Explore the application of integration in solving differential equations.
  • Investigate the use of computer algebra systems like Mathematica for symbolic integration.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to enhance their understanding of partial fractions in mathematical analysis.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \int{\frac{x^2}{\left( x - 1 \right) ^2 \, \left( x - 2 \right) } \,\mathrm{d}x} \end{align*}$

As there is a repeated root, the partial fraction decomposition we should use is:

$\displaystyle \begin{align*} \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2} &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ \frac{A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 }{\left( x -1 \right) ^2 \,\left( x - 2 \right) } &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 1 \end{align*}$ to find $\displaystyle \begin{align*} -B = 1 \implies B = -1 \end{align*}$

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} C = 4 \end{align*}$

Substitute B and C back in:

$\displaystyle \begin{align*} A\,\left( x - 1 \right) \left( x - 2 \right) - \left( x - 2 \right) + 4\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 0 \end{align*}$ to find $\displaystyle \begin{align*} 2\,A + 2 + 4 = 0 \implies 2\,A = -6 \implies A = -3 \end{align*}$.

So that means

$\displaystyle \begin{align*} \int{ \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \,\mathrm{d}x} &= \int{ \left[ -\frac{3}{x - 1} - \frac{1}{\left( x - 1 \right) ^2 } + \frac{4}{x - 2} \right] \,\mathrm{d}x } \\ &= -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C \end{align*}$
 
  • Like
Likes   Reactions: benorin and chwala
Physics news on Phys.org
Prove It said:
As there is a repeated root, the partial fraction decomposition we should use is:

$\displaystyle \begin{align*} \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2} &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ \frac{A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 }{\left( x -1 \right) ^2 \,\left( x - 2 \right) } &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 1 \end{align*}$ to find $\displaystyle \begin{align*} -B = 1 \implies B = -1 \end{align*}$

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} C = 4 \end{align*}$

Substitute B and C back in:

$\displaystyle \begin{align*} A\,\left( x - 1 \right) \left( x - 2 \right) - \left( x - 2 \right) + 4\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 0 \end{align*}$ to find $\displaystyle \begin{align*} 2\,A + 2 + 4 = 0 \implies 2\,A = -6 \implies A = -3 \end{align*}$.

So that means

$\displaystyle \begin{align*} \int{ \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \,\mathrm{d}x} &= \int{ \left[ -\frac{3}{x - 1} - \frac{1}{\left( x - 1 \right) ^2 } + \frac{4}{x - 2} \right] \,\mathrm{d}x } \\ &= -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C \end{align*}$
This is correct!
 
  • Like
Likes   Reactions: benorin

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
6K