MHB Sava's question via email about integration with partial fractions.

Click For Summary
The discussion focuses on evaluating the integral of the function x² divided by (x - 1)²(x - 2) using partial fraction decomposition. The decomposition is established as A/(x - 1) + B/(x - 1)² + C/(x - 2), leading to the equations that determine the coefficients A, B, and C. After solving for these coefficients, it is found that A = -3, B = -1, and C = 4. The final integral evaluates to -3ln|x - 1| + 1/(x - 1) + 4ln|x - 2| + C, confirming the correctness of the solution. The process illustrates the application of partial fractions in integration involving repeated roots.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \int{\frac{x^2}{\left( x - 1 \right) ^2 \, \left( x - 2 \right) } \,\mathrm{d}x} \end{align*}$

As there is a repeated root, the partial fraction decomposition we should use is:

$\displaystyle \begin{align*} \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2} &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ \frac{A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 }{\left( x -1 \right) ^2 \,\left( x - 2 \right) } &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 1 \end{align*}$ to find $\displaystyle \begin{align*} -B = 1 \implies B = -1 \end{align*}$

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} C = 4 \end{align*}$

Substitute B and C back in:

$\displaystyle \begin{align*} A\,\left( x - 1 \right) \left( x - 2 \right) - \left( x - 2 \right) + 4\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 0 \end{align*}$ to find $\displaystyle \begin{align*} 2\,A + 2 + 4 = 0 \implies 2\,A = -6 \implies A = -3 \end{align*}$.

So that means

$\displaystyle \begin{align*} \int{ \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \,\mathrm{d}x} &= \int{ \left[ -\frac{3}{x - 1} - \frac{1}{\left( x - 1 \right) ^2 } + \frac{4}{x - 2} \right] \,\mathrm{d}x } \\ &= -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C \end{align*}$
 
  • Like
Likes benorin and chwala
Mathematics news on Phys.org
Prove It said:
As there is a repeated root, the partial fraction decomposition we should use is:

$\displaystyle \begin{align*} \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2} &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ \frac{A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 }{\left( x -1 \right) ^2 \,\left( x - 2 \right) } &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 1 \end{align*}$ to find $\displaystyle \begin{align*} -B = 1 \implies B = -1 \end{align*}$

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} C = 4 \end{align*}$

Substitute B and C back in:

$\displaystyle \begin{align*} A\,\left( x - 1 \right) \left( x - 2 \right) - \left( x - 2 \right) + 4\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 0 \end{align*}$ to find $\displaystyle \begin{align*} 2\,A + 2 + 4 = 0 \implies 2\,A = -6 \implies A = -3 \end{align*}$.

So that means

$\displaystyle \begin{align*} \int{ \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \,\mathrm{d}x} &= \int{ \left[ -\frac{3}{x - 1} - \frac{1}{\left( x - 1 \right) ^2 } + \frac{4}{x - 2} \right] \,\mathrm{d}x } \\ &= -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C \end{align*}$
This is correct!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K