MHB Sava's question via email about integration with partial fractions.

AI Thread Summary
The discussion focuses on evaluating the integral of the function x² divided by (x - 1)²(x - 2) using partial fraction decomposition. The decomposition is established as A/(x - 1) + B/(x - 1)² + C/(x - 2), leading to the equations that determine the coefficients A, B, and C. After solving for these coefficients, it is found that A = -3, B = -1, and C = 4. The final integral evaluates to -3ln|x - 1| + 1/(x - 1) + 4ln|x - 2| + C, confirming the correctness of the solution. The process illustrates the application of partial fractions in integration involving repeated roots.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \int{\frac{x^2}{\left( x - 1 \right) ^2 \, \left( x - 2 \right) } \,\mathrm{d}x} \end{align*}$

As there is a repeated root, the partial fraction decomposition we should use is:

$\displaystyle \begin{align*} \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2} &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ \frac{A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 }{\left( x -1 \right) ^2 \,\left( x - 2 \right) } &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 1 \end{align*}$ to find $\displaystyle \begin{align*} -B = 1 \implies B = -1 \end{align*}$

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} C = 4 \end{align*}$

Substitute B and C back in:

$\displaystyle \begin{align*} A\,\left( x - 1 \right) \left( x - 2 \right) - \left( x - 2 \right) + 4\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 0 \end{align*}$ to find $\displaystyle \begin{align*} 2\,A + 2 + 4 = 0 \implies 2\,A = -6 \implies A = -3 \end{align*}$.

So that means

$\displaystyle \begin{align*} \int{ \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \,\mathrm{d}x} &= \int{ \left[ -\frac{3}{x - 1} - \frac{1}{\left( x - 1 \right) ^2 } + \frac{4}{x - 2} \right] \,\mathrm{d}x } \\ &= -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C \end{align*}$
 
  • Like
Likes benorin and chwala
Mathematics news on Phys.org
Prove It said:
As there is a repeated root, the partial fraction decomposition we should use is:

$\displaystyle \begin{align*} \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right) ^2 } + \frac{C}{x - 2} &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ \frac{A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 }{\left( x -1 \right) ^2 \,\left( x - 2 \right) } &\equiv \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \\ A\,\left( x - 1 \right) \left( x - 2 \right) + B\,\left( x - 2 \right) + C\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 1 \end{align*}$ to find $\displaystyle \begin{align*} -B = 1 \implies B = -1 \end{align*}$

Let $\displaystyle \begin{align*} x = 2 \end{align*}$ to find $\displaystyle \begin{align*} C = 4 \end{align*}$

Substitute B and C back in:

$\displaystyle \begin{align*} A\,\left( x - 1 \right) \left( x - 2 \right) - \left( x - 2 \right) + 4\,\left( x - 1 \right) ^2 &\equiv x^2 \end{align*}$

Let $\displaystyle \begin{align*} x = 0 \end{align*}$ to find $\displaystyle \begin{align*} 2\,A + 2 + 4 = 0 \implies 2\,A = -6 \implies A = -3 \end{align*}$.

So that means

$\displaystyle \begin{align*} \int{ \frac{x^2}{\left( x - 1 \right) ^2\,\left( x - 2 \right) } \,\mathrm{d}x} &= \int{ \left[ -\frac{3}{x - 1} - \frac{1}{\left( x - 1 \right) ^2 } + \frac{4}{x - 2} \right] \,\mathrm{d}x } \\ &= -3\ln{\left| x - 1 \right| } + \frac{1}{x - 1} + 4\ln{\left| x - 2 \right| } + C \end{align*}$
This is correct!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
4
Views
11K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
4
Views
11K
Replies
1
Views
11K
Back
Top