Sava's question via email about matrix multiplication

Click For Summary
SUMMARY

The discussion focuses on evaluating the matrix multiplication of a given matrix A with its transpose, A^T, and subsequently deriving the inverse of A. The calculations show that A A^T results in 25I, indicating that A is orthogonal. Consequently, the inverse of A is determined to be A^{-1} = (1/25)A^T. Additionally, it is suggested that verifying A^T A = 25I will confirm the correctness of the inverse calculation.

PREREQUISITES
  • Matrix multiplication techniques
  • Understanding of matrix transposition
  • Concept of matrix inverses
  • Familiarity with identity matrices
NEXT STEPS
  • Learn about properties of orthogonal matrices
  • Explore the derivation of matrix inverses in detail
  • Study the implications of matrix multiplication in linear algebra
  • Investigate applications of matrix transposition in data science
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as data scientists and engineers who utilize matrix operations in their work.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Given the matrix $\displaystyle \begin{align*} A = \left[ \begin{matrix} 3 & 0 & -4 \\ 4 & 0 & \phantom{-}3 \\ 0 & 5 & \phantom{-}0 \end{matrix}\right] \end{align*}$ evaluate $\displaystyle \begin{align*} A\,A^T \end{align*}$ and $\displaystyle \begin{align*} A^T\,A \end{align*}$. Hence write down $\displaystyle \begin{align*} A^{-1} \end{align*}$.

$\displaystyle \begin{align*} A\,A^T &= \left[\begin{matrix} 3 & 0 & -4 \\ 4 & 0 & \phantom{-}3 \\ 0 & 5 & \phantom{-}0 \end{matrix}\right]\left[ \begin{matrix} \phantom{-}3 & 4 & 0 \\ \phantom{-}0 & 0 & 5 \\ -4 & 3 & 0 \end{matrix}\right] \\ &= \left[ \begin{matrix} 3\cdot 3 + 0 \cdot 0 + \left( -4 \right) \cdot \left( -4 \right) & 3 \cdot 4 + 0 \cdot 0 + \left( -4 \right) \cdot 3 & 3 \cdot 0 + 0 \cdot 5 + \left( -4 \right) \cdot 0 \\ 4 \cdot 3 + 0 \cdot 0 + 3 \cdot \left( -4 \right) & 4 \cdot 4 + 0 \cdot 0 + 3 \cdot 3 & 4\cdot 0 + 0 \cdot 5 + 3 \cdot 0 \\ 0 \cdot 3 + 5 \cdot 0 + 0 \cdot \left( -4 \right) & 0 \cdot 4 + 5 \cdot 0 + 0 \cdot 3 & 0 \cdot 0 + 5 \cdot 5 + 0 \cdot 0 \end{matrix} \right] \\ &= \left[ \begin{matrix} 25 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 25 \end{matrix} \right] \\ &= 25\,I \end{align*}$

Since post-multiplying $\displaystyle \begin{align*} A \end{align*}$ by $\displaystyle \begin{align*} A^T \end{align*}$ gave $\displaystyle \begin{align*} 25\,I \end{align*}$, it suggests that $\displaystyle \begin{align*} A^{-1} = \frac{1}{25}\,A^T \end{align*}$.

Of course, we must also check that $\displaystyle \begin{align*} A^T\,A = 25\,I \end{align*}$ as well. This can be left to the OP/Reader. IF this is the case, then $\displaystyle \begin{align*} A^{-1} = \frac{1}{25}\,A^T \end{align*}$.
 
Physics news on Phys.org

Similar threads

Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K