A Scalar Field Dynamics in Inflation

AI Thread Summary
The discussion centers on the dynamics of a scalar field in a cubic potential, specifically the equation of motion derived from the Euler-Lagrange equations. The user is encountering errors while plotting the phase portrait in Python for specific parameters, suggesting potential issues with their code implementation. It is clarified that the equation is applicable in various cosmological contexts, not limited to inflation, and that adding a cubic term results in two attractors representing different equilibrium positions. The higher attractor corresponds to the inflationary phase, while the lower one indicates the end of inflation, dependent on initial conditions. Understanding the non-linear dynamics of the scalar field is crucial for predicting its behavior accurately.
AHSAN MUJTABA
Messages
87
Reaction score
4
TL;DR Summary
We know how inflation ends classically in a usual quadratic scalar potential case; ##1/2m^{2}\phi^{2}##., i.e. ##\phi ## starts oscillating towards ##0## magnitude.
I am facing a problem while wanting ##\phi## dynamics in a cubic potential; ##g\phi^{3}##. The equation of motion I get for my case is(this follows from the usual Euler-Lagrange equations for ##\phi## in cosmology--Briefly discussed in Carol's Spacetime Geometry, inflation chapter):,
$$\ddot{\phi}+3\sqrt{\frac{8 \pi G}{3}\Bigg(\frac{1}{2}\dot{\phi}^{2}+\frac{1}{2}m^{2}\phi^{2}+g\phi^{3} \Bigg)}\dot{\phi}+\Bigg(m^{2}\phi+3g\phi^{2}\Bigg)=0$$
Take ##G=1##. I tried to plot their phase portrait, but I got errors when plotting the equation's actual solutions for ##m=0.5## and ##g=5##. depicting no solutions. I am using Python. Does that mean for cubic potentials(non-symmetric), inflation might happen at some special initial conditions? I am also attaching phase portraits of cubic and quadratic cases. In phase portrait, the attractor represents the equilibrium position of ##\phi## meaning inflation has ended. If I add a cubic term to potential, then there must be two attractors. What do they represent? I am a bit confused.
 

Attachments

Last edited:
Space news on Phys.org


First of all, it is important to note that the equation of motion you have written is not specific to inflation. It is a general equation of motion for a scalar field in a cubic potential, and can be used in various contexts in cosmology, not just for inflation.

Regarding your specific problem, it is possible that there are some issues with the implementation of your code in Python, which is causing the errors in plotting the solutions. I would recommend double checking your code and making sure that it is correctly implementing the equation of motion.

In terms of the phase portrait, it is true that adding a cubic term to the potential will result in two attractors, as opposed to one in the case of a quadratic potential. These two attractors represent the two possible equilibrium positions for the scalar field. In the case of inflation, the attractor at a higher value of the field corresponds to the inflationary phase, while the attractor at a lower value of the field corresponds to the end of inflation.

It is possible that for certain initial conditions, the scalar field will settle at the lower attractor, indicating the end of inflation. This could happen even with a cubic potential, as long as the initial conditions are such that the field does not roll up to the higher attractor.

Overall, it is important to keep in mind that the dynamics of a scalar field in a potential is a highly non-linear system, and it is not always easy to predict the behavior of the field without numerical simulations. It is possible that for certain initial conditions and parameters, the behavior of the field may not be intuitive, and it is important to carefully analyze the solutions and phase portrait to understand the dynamics.
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top