Scale factor of special conformal transformation

Click For Summary
SUMMARY

The discussion focuses on deriving the scale factor Λ of a special conformal transformation as outlined in Di Francesco et al.'s "Conformal Field Theory." The transformation is expressed as x'μ = (xμ-bμ x^2)/(1-2 b.x + b^2 x^2), and the goal is to show that the metric transforms as g'μν = Λ(x) gμν. Participants highlight the complexity of the derivative calculations and the necessity of using the chain rule to simplify the expressions, ultimately leading to a correct formulation of the transformation derivatives.

PREREQUISITES
  • Understanding of special conformal transformations in theoretical physics
  • Familiarity with metric tensors and their transformations
  • Proficiency in calculus, particularly partial derivatives
  • Knowledge of LaTeX for mathematical expressions
NEXT STEPS
  • Study the derivation of scale factors in conformal transformations
  • Explore the application of the chain rule in tensor calculus
  • Learn about metric tensor transformations in general relativity
  • Review examples of special conformal transformations in physics literature
USEFUL FOR

The discussion is beneficial for theoretical physicists, graduate students in physics, and researchers focusing on conformal field theory and related mathematical frameworks.

stegosaurus
Messages
2
Reaction score
0

Homework Statement


(From Di Francesco et al, Conformal Field Theory, ex .2)
Derive the scale factor Λ of a special conformal transformation.

Homework Equations


The special conformal transformation can be written as

x'μ = (xμ-bμ x^2)/(1-2 b.x + b^2 x^2)

and I need to show that the metric transforms as

g'μν = Λ(x) gμν

The Attempt at a Solution


My attempt was to differentiate the transformation law in order to then use the chain rule (the derivatives are intended as partial):

gσλ=dx'μ/dxσ dx'ν/dxλ g'μν

For a particular partial derivative I get:
dx'μ/dxν = (δμν-2bμxν)/(1-2 b.x + b^2 x^2)- (xμ-bμ x^2)(-2 bν+2b^2 x ν)/(1-2 b.x + b^2 x^2)^2

however plugging this and the other similar term in the chain rule gives rise to a very long expression which does not appear to simplify (I've checked it does in 1D, if all quantities were scalars).
Am I doing something wrong, or am I just missing something?
 
Physics news on Phys.org
stegosaurus said:
[...] plugging this and the other similar term in the chain rule gives rise to a very long expression which does not appear to simplify
Oh c'mon, it's not all that "long". (It might seem less intimidating if you used latex and \frac ...)

The combined numerator ends up as a sum of 4 terms, and you can contract some of indices with ##g##.

You'll have to post the whole expression before we can help you figure out what's wrong.
 
You're right, I made a dumb mistake early on and that prevented me from getting to the final answer! Now I get it.
 
$$ \frac{\partial x'^\mu}{\partial x^\nu}=\frac{\delta^\mu_\nu-2 b^\mu x_\nu}{1-2(b\cdot x)+b^2x^2}-\frac{(x^\mu-b^\mu x^2)(-2 b_\nu+2 b^2 x_\nu)}{\left ( 1-2(b\cdot x)+b^2x^2\right )^2} $$
is this expression correct?
 
metalvaro18 said:
$$ \frac{\partial x'^\mu}{\partial x^\nu}=\frac{\delta^\mu_\nu-2 b^\mu x_\nu}{1-2(b\cdot x)+b^2x^2}-\frac{(x^\mu-b^\mu x^2)(-2 b_\nu+2 b^2 x_\nu)}{\left ( 1-2(b\cdot x)+b^2x^2\right )^2} $$
is this expression correct?
Afaict, it looks ok to me.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
5K