In all the possible potentials I have encountered so far, it seems that the bound states (i.e. E < [V(-infinity) and V(infinity)]) always results in a discrete spectrum of energies, whereas the scattering states (E > [V(-infinity) and V(infinity)]) always results in a continuous spectrum of energies.(adsbygoogle = window.adsbygoogle || []).push({});

I can't seem to find a logical explanation for this. If we use the anove defintion of bound and scattering states: The potential at plus/minus infinity of the harmonic oscillator is infinite, but so is the energy (for infinite n). But the harmonic oscillator has a bound spectrum.

I can't quite see this. I've taken the above from Griffith's, and sadly he never mentions whether "bound states = discrete spectrum" or not.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Scattering and bound states

**Physics Forums | Science Articles, Homework Help, Discussion**