MHB Schreier's Lemma Proof not clear.

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Proof
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Hello MHB.

I am reading a book on Combinatorics in which there is proved the Schreier's Lemma. I don't fully understand the proof.

THEOREM: Let $\{g_1,\ldots,g_m\}$ generate a group $G$. Let $k_1,\ldots,k_s$ be coset representatives of for a subgroup $H$ of $G$ where $k_1=1$. Let \(\overline{g}=k_i\) iff \(gH=k_{i}H\). Then $H$ is generated by the set $$S_H=\{k_ig_j\overline{(k_ig_j)}^{-1}:i=1,\ldots,s;j=1,\ldots,m\}$$

PROOF: All the elements of $S_H$ lie in $H$. Now suppose that $h=g_{i_1}g_{i_2}\ldots g_{i_r}\in H$. For $j=0,\ldots,r,$ let $t_j=g_{i_1}\ldots g_{i_j}$, and let $u_j=\overline{t_j}$. Then, with $u_0=1$, we have $$h=u_0g_{i_1}u_1^{-1}.u_1g_{i_2}u_2^{-1}\ldots u_{r-1}g_{i_r}u_r^{-1},$$
Since $u_0=u_r=1$ and all the other $u_i$ cancel with their inverses. But $u_{j-1}g_{i_j}$ lies in the same coset as $u_j$. Thus $u_{j-1}g_{i_j}u_j^{-1}\in S_H$, and we have expressed $h$ as a product of elements of $S_H$.
__________________________________________________________
I can't see how it is true that $u_{j-1}g_{i_j}u_j^{-1}\in S_H$. Can somebody please explain this to me?
 
Last edited by a moderator:
Physics news on Phys.org
First of all, it appears that from your proof we should have:

$\overline{g} = k$ if $Hg = Hk$.

The reason I say this, is because if $ab^{-1} \in H$, then we have:

$Ha = Hb$, NOT $aH = bH$.

We can see that $u_{j-1}g_{i_j}(u_j)^{-1} \in S_H$ directly:

clearly, $u_{j-1} = \overline{t_{j-1}}$ is one of the $k$'s, and $g_{i_j}$ is one of the $g$'s, so:

$u_{j-1}g_{i_j}$ is of the form $k_vg_w$ for some appropriate indices $v,w$.

Furthermore, since $t_j = t_{j-1}g_{i_j}$, we have:

$u_{j-1}g_{i_j}(u_j)^{-1} = \overline{t_{j-1}}g_{i_j}(\overline{t_{j-1}g_{i_j}})^{-1} = \overline{t_{j-1}}g_{i_j}(\overline{\overline{t_{j-1}}g_{i_j}})^{-1}$, which is in $S_H$

(since if $\overline{g} = k_r$, then $\overline{\overline{g}g'} = \overline{k_rg'} = \overline{gg'}$, that is:

$H\overline{g}g' = (H\overline{g})g' = (Hk_r)g' = (Hg)g' = Hgg'$).

Perhaps it might be useful to see an application.

Let $G = S_4$ with generating set $\{(1\ 2), (2\ 3), (3\ 4)\}$.

Let H be the subgroup:

$\{e, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2), (1\ 3), (2\ 4), (1\ 4)(2\ 3), (1\ 2)(3\ 4)\}$.

$|H| = 8$, so we have 3 (right) cosets:

$H, H(1\ 2\ 3),H(1\ 3\ 2)$. So we may take our traversal set to be $\{e,(1\ 2\ 3), (1\ 3\ 2)\}$.

we now have 9 possible products $k_ig_j$:

(1 2)
(2 3)
(3 4)
(1 2 3)(1 2) = (1 3)
(1 2 3)(2 3) = (1 2)
(1 2 3)(3 4) = (1 2 3 4)
(1 3 2)(1 2) = (2 3)
(1 3 2)(2 3) = (1 3)
(1 3 2)(3 4) = (1 3 4 2) <--note we only get 6 distinct products.

now we find which coset of $H$ these are in (finding $\overline{k_ig_j}$). So:

$\overline{(1\ 2)} = (1\ 2\ 3)$
$\overline{(2\ 3)} = (1\ 3\ 2)$
$\overline{(3\ 4)} = (1\ 2\ 3)$
$\overline{(1\ 3)} = e$
$\overline{(1\ 2\ 3\ 4)} = e$
$\overline{(1\ 3\ 4\ 2)} = (1\ 3\ 2)$

Now we calculate $S_H$:

(1 2)(1 3 2) = (1 3) <--this is in $H$.
(2 3)(1 2 3) = (1 3)
(3 4)(1 3 2) = (1 4 3 2)<--also in $H$.
(1 3)e = (1 3)
(1 2 3 4)e = (1 2 3 4)
(1 3 4 2)(1 2 3) = (2 4),

so we see that $S_H = \{e, (1\ 3), (2\ 4), (1\ 2\ 3\ 4), (1\ 4\ 3\ 2)\}$.

Note this generating set is by no means minimal, in fact:

$H = \langle (1\ 3), (1\ 2\ 3\ 4)\rangle$.

Another example is given here:

Schreier's lemma - Wikipedia, the free encyclopedia
 
Deveno said:
First of all, it appears that from your proof we should have:

$\overline{g} = k$ if $Hg = Hk$.

The reason I say this, is because if $ab^{-1} \in H$, then we have:

$Ha = Hb$, NOT $aH = bH$.

We can see that $u_{j-1}g_{i_j}(u_j)^{-1} \in S_H$ directly:

clearly, $u_{j-1} = \overline{t_{j-1}}$ is one of the $k$'s, and $g_{i_j}$ is one of the $g$'s, so:

$u_{j-1}g_{i_j}$ is of the form $k_vg_w$ for some appropriate indices $v,w$.

Furthermore, since $t_j = t_{j-1}g_{i_j}$, we have:

$u_{j-1}g_{i_j}(u_j)^{-1} = \overline{t_{j-1}}g_{i_j}(\overline{t_{j-1}g_{i_j}})^{-1} = \overline{t_{j-1}}g_{i_j}(\overline{\overline{t_{j-1}}g_{i_j}})^{-1}$, which is in $S_H$

(since if $\overline{g} = k_r$, then $\overline{\overline{g}g'} = \overline{k_rg'} = \overline{gg'}$, that is:

$H\overline{g}g' = (H\overline{g})g' = (Hk_r)g' = (Hg)g' = Hgg'$).

Perhaps it might be useful to see an application.

Let $G = S_4$ with generating set $\{(1\ 2), (2\ 3), (3\ 4)\}$.

Let H be the subgroup:

$\{e, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2), (1\ 3), (2\ 4), (1\ 4)(2\ 3), (1\ 2)(3\ 4)\}$.

$|H| = 8$, so we have 3 (right) cosets:

$H, H(1\ 2\ 3),H(1\ 3\ 2)$. So we may take our traversal set to be $\{e,(1\ 2\ 3), (1\ 3\ 2)\}$.

we now have 9 possible products $k_ig_j$:

(1 2)
(2 3)
(3 4)
(1 2 3)(1 2) = (1 3)
(1 2 3)(2 3) = (1 2)
(1 2 3)(3 4) = (1 2 3 4)
(1 3 2)(1 2) = (2 3)
(1 3 2)(2 3) = (1 3)
(1 3 2)(3 4) = (1 3 4 2) <--note we only get 6 distinct products.

now we find which coset of $H$ these are in (finding $\overline{k_ig_j}$). So:

$\overline{(1\ 2)} = (1\ 2\ 3)$
$\overline{(2\ 3)} = (1\ 3\ 2)$
$\overline{(3\ 4)} = (1\ 2\ 3)$
$\overline{(1\ 3)} = e$
$\overline{(1\ 2\ 3\ 4)} = e$
$\overline{(1\ 3\ 4\ 2)} = (1\ 3\ 2)$

Now we calculate $S_H$:

(1 2)(1 3 2) = (1 3) <--this is in $H$.
(2 3)(1 2 3) = (1 3)
(3 4)(1 3 2) = (1 4 3 2)<--also in $H$.
(1 3)e = (1 3)
(1 2 3 4)e = (1 2 3 4)
(1 3 4 2)(1 2 3) = (2 4),

so we see that $S_H = \{e, (1\ 3), (2\ 4), (1\ 2\ 3\ 4), (1\ 4\ 3\ 2)\}$.

Note this generating set is by no means minimal, in fact:

$H = \langle (1\ 3), (1\ 2\ 3\ 4)\rangle$.

Another example is given here:

Schreier's lemma - Wikipedia, the free encyclopedia
Thank you Deveno for the kind explanation. It really helps. I was not able to read it before because of my exams. Sorry for the delay in feedback.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top