The Hamilton-Jacobi equation(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\frac{\partial W}{\partial t}+\frac{1}{2m}\left[\left(\frac{\partial W}{\partial x}\right)^2+\left(\frac{\partial W}{\partial y}\right)^2+\left(\frac{\partial W}{\partial z}\right)^2\right] + V(x,y,z) = 0[/tex]

Can be re-expressed as [tex]|\nabla W| = \sqrt{2m(E-V)}[/tex] by taking [tex]W = -Et+S(x,y,z)[/tex]

Schrodinger says that if we think of the level curves of W, and assign an arbitrary curve the value [tex]W_0[/tex], that we can take a normal to that paticular level curve (spanning [tex]W_0+dW[/tex]) to be":

[tex]dn = \frac{dW_0}{\sqrt{2m(E-V)}}[/tex]

(In other words, [tex]\frac{dW_0}{dn} = |\nabla W|[/tex])

Where does this come from? How do we know the normal differential has this value?

thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Schrodinger solution to hamilton-jacobi

**Physics Forums | Science Articles, Homework Help, Discussion**