I Schwartz derivation of the Feynman rules for scalar fields

Click For Summary
Schwartz's derivation of the Feynman rules for scalar fields raises questions about boundary conditions and the treatment of vacuum states. In the first query, the concern is whether the assumption that the term involving the Feynman propagator vanishes at the time boundary is justified, given previous caution about boundary conditions in the LSZ formula. The second question addresses the use of the free field result for the correlation function in the presence of interactions, noting that the empty state differs from the vacuum state, which introduces complexities related to the interaction potential. Despite these concerns, the final results align with expectations, prompting a discussion on the validity of approximating the interacting and free vacua as equal. The thread highlights the nuances in applying boundary conditions and vacuum state considerations in quantum field theory.
eoghan
Messages
201
Reaction score
7
TL;DR
Justify why the fields die off at infinite time, and why the interaction vacuum can be exchanged with the free vacuum.
Hi everyone,

In his book "Quantum field theory and the standard model", Schwartz derives the position-space Feynman rules starting from the Schwinger-Dyson formula (section 7.1.1). I have two questions about his derivation.

1) As a first step, he rewrites the correlation function as
$$
\langle\Omega\vert\phi_1\phi_2\vert\Omega\rangle = i\int d^4x (\Box_xD_{x1})\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle = i\int d^4x D_{x1}\Box_x\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle
$$
where ##D_{x1}## is the Feynman propagator, such that ##\Box_xD_{x1}=-i\delta_{x1}##
In the last step, he integrated by parts supposing that the term ##D_{x1}\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle## disappears on the boundary of the integration domain.

However, previously while deriving the LSZ formula (section 6.1, just before Eq 6.9), he notes "we will obviously have to be careful about boundary conditions at ##t=\pm\infty##. However, we can safely assume that the fields die off at ##\vec x=\pm\infty##, allowing us to integrate by parts in ##\vec x##". Shouldn't this apply also for the present derivation? I mean, how can we justify that ##D_{x1}\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle## dies off also at the time boundary?

2) In computing the two points correlation function in the presence of interaction, Schwartz notices that ##\langle\Omega\vert\phi_1\phi_2\vert\Omega\rangle## contains a term ##g^2\langle\Omega\vert\phi^2_x\phi^2_y\vert\Omega\rangle## (Eq 7.19). Since we are interested only in order ##g^2##, he says that we should use the free field result for ##\langle\Omega\vert\phi^2_x\phi^2_y\vert\Omega\rangle##. This makes sense, but in the free field, the empty state is ##\vert 0\rangle\neq \vert\Omega\rangle##. And indeed, later on he shows that between ##\vert\Omega\rangle## and ##\vert 0\rangle## there is a factor proportional to the exponential of the interaction potential (Eq 7.53 and following).

Of course, his strategy of considering the interacting and free vacuum equal is correct, because the final result is correct. But I do not see how it can be justified.
 
Physics news on Phys.org
Shouldn't we have to take into account the exponentials in Eq 7.19? Or am I missing something?Thank you in advance!
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...