Given the path integral(adsbygoogle = window.adsbygoogle || []).push({});

[tex] < -\infty | \infty > = N \int D[\phi ]e^{i \int dx (L+J \phi ) } [/tex]

then , it would be true that (Schwinger)

[tex] \frac{\partial < -\infty | \infty >}{\partial J }= < -\infty |\delta \int L d^{4}x | \infty > [/tex]

If so, could someone provide an exmple with the Kelin-gordon scalar field plus an interaction of the form [tex] \phi ^{4} [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Schwinger Quantum action

**Physics Forums | Science Articles, Homework Help, Discussion**