Second moment of occupation number for bosons

AI Thread Summary
The discussion revolves around the calculation of the second moment of occupation number for bosons, focusing on the expression for the variance, Δn². The user attempted to derive the equality for the average squared fluctuation, but encountered discrepancies in their results. They outlined the grand-canonical partition function Z and its logarithmic form, relating it to the average occupation number and its variance. The calculations show that Δn² can be expressed through the second derivative of the logarithm of Z, leading to a summation over the bosonic distribution function. Ultimately, the discussion emphasizes the correct formulation of these statistical mechanics concepts in the context of bosons.
Rayan
Messages
17
Reaction score
1
Homework Statement
Show that for bosons

$$ \overline{(\Delta \eta)^2} \quad=\quad \overline{ \eta_{BE}} (1 + \overline{ \eta_{BE}} ) $$

where

$$ (\Delta \eta) \quad=\quad \eta - \overline{ \eta } $$
Relevant Equations
.
I tried to show this equality by explicitly determining what

$$ \overline{(\Delta \eta)^2} $$

is, but I got a totally different answer for some reason, here is my attempt to solve it, what did I miss?
 

Attachments

  • 371510642_1050809685950100_2988414984252800225_n.jpg
    371510642_1050809685950100_2988414984252800225_n.jpg
    39.3 KB · Views: 99
  • 371454039_6815803335169365_3878807093405375546_n.jpg
    371454039_6815803335169365_3878807093405375546_n.jpg
    36.4 KB · Views: 85
Last edited:
Physics news on Phys.org
Note that
$$\Delta n^2 = \overline{n^2}-\overline{n}^2=\langle n^2 \rangle - \langle n \rangle^2.$$
Then indeed you have in the grand-canonical ensemble
$$Z(\beta,\alpha)=\prod_{\vec{p}} \sum_{n=0}^{\infty} \exp[n (-\beta \omega_{\vec{p}}+\alpha)] = \prod_{\vec{p}} \frac{1}{1-\exp(-\beta \omega_{\vec{p}}+\alpha)}.$$
It's easier to work with
$$\Omega=\ln Z=-\sum_{\vec{p}} \ln [ 1-\exp(-\beta \omega_{\vec{p}}+\alpha)].$$
Now
$$\langle n \rangle=\frac{1}{Z} \partial_{\alpha} Z =\partial_{\alpha} \ln Z=\sum_{\vec{p}} f_{\text{B}}(\omega_{\vec{p}})=\sum{\vec{p}} \frac{1}{\exp(\beta \epsilon-\alpha)}.$$
Further you have
$$\partial_\alpha^2 \Omega =\partial_{\alpha} \left ( \frac{1}{Z} \partial_{\alpha Z} \right) =\frac{1}{Z} \partial_{\alpha}^2 Z -\left (\frac{1}{Z} \partial_{\alpha} Z \right)=\langle n^2 \rangle -\langle n \rangle^2=\Delta n^2.$$
Then you get
$$\Delta n^2 = \partial_{\alpha}^2 \ln Z=\sum_{\vec{p}} \partial_{\alpha} f_{\text{B}}(\omega_{\vec{p}}).$$
It's easy to check, that this gives what you try to prove.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...

Similar threads

Back
Top