- #1
Karlisbad
- 131
- 0
Let be a functional S so [tex] \delta S =0 [/tex] give the Euler-Lagrange equation where:
[tex] S= \int_{a}^{b}dtL(q,\dot q, t) [/tex]
My question is ..How the "second variation" [tex] \delta ( \delta S )=0= \delta ^{2} S [/tex] defined??.. in order we could decide if a function q=q(t) is either a maximum or a minimum point of function space.. thanks.
[tex] S= \int_{a}^{b}dtL(q,\dot q, t) [/tex]
My question is ..How the "second variation" [tex] \delta ( \delta S )=0= \delta ^{2} S [/tex] defined??.. in order we could decide if a function q=q(t) is either a maximum or a minimum point of function space.. thanks.