A Selection rule for spectra with circular polarization

Click For Summary
The discussion centers on the interpretation of circularly polarized electric fields as complex fields, specifically in the context of calculating dipole matrix elements for selection rules. The author notes a discrepancy between using the complex representation of the dipole operator (D_x + iD_y) and the real electric field representation, which yields different operators. The derivation of selection rules typically employs first-order perturbation theory, allowing for the transition from complex to real representations through superposition. It is emphasized that when dealing with non-trivial dipole operators, the dipole matrix should be expressed in the molecular frame while the electric field is in the lab frame, utilizing the Wigner-Eckart theorem for proper alignment. This approach avoids confusion in determining the correct coordinates for the dipole operator in experimental setups.
forever_physicist
Messages
7
Reaction score
1
Hello everybody! I have a silly question that is blowing my mind.
When there is a circular polarized electric field, it can be interpreted as the real part of a complex field, for example
$$E(t) = E_0( \hat{x}+i\hat{y}) e^{-i\omega t}$$
Now, for some selection rules it is useful to calculate the matrix elements of the dipole operator in the direction of the electric field. If we use this definition that operator is
$$D_x + iD_y$$
while if we use directly the real electric field we get a different operator, that should be the correct one. Anyway, to derive the selection rules, usually this notation is used.
How can this work?
 
Physics news on Phys.org
Usually one uses 1st-order perturbation theory, i.e., simply the matrix element of the dipole operator wrt. the unperturbed atomic states (Fermi's golden rule). So you can take the complex form and find the one for the real part by superposition.
 
  • Love
Likes malawi_glenn
In most cases where the dipole operator is non-trivial, you will end up writing the dipole matrix in the molecule frame and the electric field in the lab frame. (You make them meet with the Wigner-Eckart theorem.) So don't bother trying to guess the right coordinates for ##D## in the lab frame at the start.
 
A relative asked me about the following article: Experimental observation of a time rondeau crystal https://www.nature.com/articles/s41567-025-03028-y I pointed my relative to following article: Scientists Discovered a Time Crystal That Reveals a New Way to Order Time https://www.yahoo.com/news/articles/scientists-discovered-time-crystal-reveals-180055389.html This area is outside of my regular experience. I'm interested in radiation effects in polycrystalline material, i.e., grain...

Similar threads

Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
3K
Replies
0
Views
1K