Is \( f(P) \) a \( p \)-Sylow Subgroup of \( H \)?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving that if \( G \) is a finite group and \( f: G \rightarrow H \) is a group epimorphism, then for any \( P \in \text{Syl}_p(G) \), it follows that \( f(P) \in \text{Syl}_p(H) \). The participants clarify that \( f \) being an epimorphism implies surjectivity, not bijectivity. They establish that the order of \( f(P) \) must equal \( p^k \) due to the properties of homomorphisms and the correspondence theorem, leading to the conclusion that \( f(P) \) is indeed a \( p \)-Sylow subgroup of \( H \).

PREREQUISITES
  • Understanding of group theory, specifically Sylow theorems
  • Knowledge of group homomorphisms and epimorphisms
  • Familiarity with the correspondence theorem in group theory
  • Basic concepts of group orders and subgroup properties
NEXT STEPS
  • Study the properties of Sylow subgroups in finite groups
  • Learn about group homomorphisms and their implications on subgroup orders
  • Explore the correspondence theorem and its applications in group theory
  • Investigate examples of epimorphisms and their effects on group structure
USEFUL FOR

Mathematicians, particularly those specializing in group theory, educators teaching abstract algebra, and students preparing for advanced studies in algebraic structures.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Show that it is a Sylow subgroup

Hey! :o

I am looking at the following exercise:

If $G$ is finite and $f:G\rightarrow H$ is a group epimorphism, show that if $P\in \text{Syl}_p(G)$ then $f(P)\in \text{Syl}_p(H)$. I have done the following:

Suppose that $|G|=p^km$, where $p\not\mid m$.
Since $P\in \text{Syl}_p(G)$ we have that $|P|=p^k$.
$f: G\rightarrow H$ is a group endomorphism, so it is a bijective map. Therefore, we have that $|G|=|f(G)|=|H|\Rightarrow |H|=p^km$.
So, every subgroup of $H$, say $S$, with $|S|=p^k$ is a $p$-Sylow subgroup of $H$, right? (Wondering)
Therefore, we have to show that $|f(P)|=p^k$, or not? (Wondering)
Does it stand that $|f(P)|=p^k$ because $f$ is bijective? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Re: Show that it is a Sylow subgroup

mathmari said:
Hey! :o

I am looking at the following exercise:

If $G$ is finite and $f:G\rightarrow H$ is a group epimorphism, show that if $P\in \text{Syl}_p(G)$ then $f(P)\in \text{Syl}_p(H)$. I have done the following:

Suppose that $|G|=p^km$, where $p\not\mid m$.
Since $P\in \text{Syl}_p(G)$ we have that $|P|=p^k$.
$f: G\rightarrow H$ is a group endomorphism

Epimorphism, which means surjective (one has to be careful, here. In the category of rings, epimorphisms are not necessarily surjective, and it is a non-trivial theorem of group theory that epimorhisms are surjective). An endomorphism is a homomorpism (not necessarily injective) $G \to G$.

...so it is a bijective map.

No, not even close to true.

Therefore, we have that $|G|=|f(G)|=|H|\Rightarrow |H|=p^km$.

No, epimorphisms are not, in general, bijective. Bijective homomorphisms are isomorphisms.
So, every subgroup of $H$, say $S$, with $|S|=p^k$ is a $p$-Sylow subgroup of $H$, right? (Wondering)
Therefore, we have to show that $|f(P)|=p^k$, or not? (Wondering)
Does it stand that $|f(P)|=p^k$ because $f$ is bijective? (Wondering)

No, and no.

If $g \in P$, for some $P \in \text{Syl}_p(G)$, then $g$ has order $p^k$ for some $k$. Thus $g^{p^k} = e_G$.

It follows since $f$ is a homomorphism that $f(g)^{p^k} = f(g^{p^k}) = f(e_G) = e_H$. Thus the order of $f(g)$ divides $p^k$, so it is $p^m$ for some $0 \leq m \leq k$.

Now $\langle f(g)\rangle$ is a $p$-subgroup of $H = f(G)$ since $f$ is surjective. Thus $f(g) \in f(P)$ and $f(P) \subseteq f(H)$.

Your goal is now to show that $f(P)$ is some Sylow $p$-subgroup of $H$.It is obvious it is a subgroup of a Sylow $p$-subgroup, so assume it is not a maximal $p$-subgroup, and derive a contradiction.
 
Re: Show that it is a Sylow subgroup

Deveno said:
Epimorphism, which means surjective (one has to be careful, here. In the category of rings, epimorphisms are not necessarily surjective, and it is a non-trivial theorem of group theory that epimorhisms are surjective). An endomorphism is a homomorpism (not necessarily injective) $G \to G$.



No, not even close to true.
No, epimorphisms are not, in general, bijective. Bijective homomorphisms are isomorphisms.

No, and no.

Ah ok... (Thinking)
Deveno said:
Now $\langle f(g)\rangle$ is a $p$-subgroup of $H = f(G)$ since $f$ is surjective.

We have that the order of $f(g)$ is a power of the prime $p$. Does this mean that it generates a cyclic subgroup? I got stuck right now... (Wondering)
What exactly do we get from the fact that $f$ is surjective? (Wondering)
Deveno said:
It is obvious it is a subgroup of a Sylow $p$-subgroup

Why do we have that? (Wondering)
 
I thought about it again... (Thinking)

Could we show it also as follows? Since $P\in \text{Syl}_p(G)$, we have that $P$ is a subgroup of $G$. Do we have from the correspondence theorem that $f(P)$ is a subgroup of $H$ ? (Wondering)

Suppose that this is true.

From the correspondence theorem we also have that $[G:P]=[H:f(P)]$, right? (Wondering)

Since $P\in \text{Syl}_p(G)$, we have that $[G:P]$ is coprime with $p$.

That means that $[H:f(P)]$ is also coprime with $p$. Do we conclude in that way that $f(P)$ is a $p$-Sylow subgroup of $H$ ? (Wondering)
 
Last edited by a moderator:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
632
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K