Series Divergence: Prove $\frac{a^n}{n^23^n}$ Diverges

  • Context: MHB 
  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Divergence Series
Click For Summary
SUMMARY

The series $\sum_{n=1}^\infty \frac{a^n}{n^2 3^n}$ diverges when the complex number $a$ satisfies $|a| > 3$. For $|a| = 3$, the series converges absolutely, while for $|a| < 3$, it may converge. The divergence is established using L'Hospital's Rule and the root test, demonstrating that the limit approaches infinity when $|a| > 3$. Therefore, the series diverges under these conditions.

PREREQUISITES
  • Understanding of complex numbers and their magnitudes
  • Familiarity with series convergence tests, including L'Hospital's Rule and the root test
  • Knowledge of asymptotic behavior of sequences
  • Basic calculus, particularly limits and series
NEXT STEPS
  • Study the application of L'Hospital's Rule in series convergence proofs
  • Learn about the root test for series convergence
  • Explore the properties of complex numbers in series
  • Investigate other convergence tests for series, such as the ratio test
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in series convergence and divergence, particularly in the context of complex numbers.

Fermat1
Messages
180
Reaction score
0
Prove that the series of $\frac{a^n}{n^23^n}$ diverges where $a$ is a complex number with $|a|{\geq}3$
 
Physics news on Phys.org
Please show some effort, Fermat. We have no idea what part of the problem is giving you trouble.
 
Deveno said:
Please show some effort, Fermat. We have no idea what part of the problem is giving you trouble.

I thought about showing the sequence of terms does not tend to 0. Can you help with that?
 
Fermat said:
I thought about showing the sequence of terms does not tend to 0. Can you help with that?

I think that's a good idea. Notice that $\displaystyle \begin{align*} \frac{a^n}{n^2\,3^n} = \left( \frac{1}{n^2} \right) \left( \frac{a}{3} \right) ^n \end{align*}$. Notice that $\displaystyle \begin{align*} \frac{1}{n^2} \to 0 \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$.

If $\displaystyle \begin{align*} \left| a \right| < 3 \end{align*}$ then $\displaystyle \begin{align*} \left| \frac{a}{3} \right| < 1 \end{align*}$ and $\displaystyle \begin{align*} \left( \frac{a}{3} \right) ^n \to 0 \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$. Thus $\displaystyle \begin{align*} \left( \frac{1}{n^2} \right) \left( \frac{a}{3} \right) ^n \to 0 \cdot 0 = 0 \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$ and so may converge.

If $\displaystyle \begin{align*} a = 3 \end{align*}$ then $\displaystyle \begin{align*} \frac{a}{3} = 1 \end{align*}$ and so $\displaystyle \begin{align*} \left( \frac{a}{3} \right) ^n = 1^n \to 1 \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$, and thus $\displaystyle \begin{align*} \left( \frac{1}{n^2} \right) \left( \frac{a}{3} \right) ^n \to 0 \cdot 1 = 0 \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$ and so may converge.

If $\displaystyle \begin{align*} a = -3 \end{align*}$ then $\displaystyle \begin{align*} \frac{a}{3} = -1 \end{align*}$ and so will oscillate between -1 and 1. Since the product of a bounded function (such as this one) and a function that goes to 0 has a limiting value of 0, that means $\displaystyle \begin{align*} \left( \frac{1}{n^2}\right) \left( \frac{a}{3} \right) ^n \to 0 \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$ and so may converge.

Now finally, if $\displaystyle \begin{align*} \left| a \right| > 3 \end{align*}$, then $\displaystyle \begin{align*} \left| \frac{a}{3} \right| > 1 \end{align*}$ and thus $\displaystyle \begin{align*} \left( \frac{a}{3} \right) ^n \to \pm \infty \end{align*}$ as $\displaystyle \begin{align*} n \to \infty \end{align*}$ (depending on the sign of $\displaystyle \begin{align*} a \end{align*}$).

That means $\displaystyle \begin{align*} \left( \frac{1}{n^2} \right) \left( \frac{a}{3} \right) ^n \end{align*}$ gives an indeterminate form $\displaystyle \begin{align*} 0 \times \infty \end{align*}$ and so has to be transformed.

Rewrite it as $\displaystyle \begin{align*} \left( \frac{1}{n^2} \right) \left( \frac{a}{3} \right) ^n = \frac{\left( \frac{a}{3} \right) ^n}{n^2} \end{align*}$ which is now an indeterminate form $\displaystyle \begin{align*} \frac{\infty}{\infty} \end{align*}$ and so L'Hospital's Rule can be used.

$\displaystyle \begin{align*} \lim_{n \to \infty} \frac{\left( \frac{a}{3} \right) ^n}{n^2} &= \lim_{n \to \infty} \frac{\left( \frac{a}{3} \right) ^n \ln{ \left( \frac{a}{3} \right) }}{2n} \textrm{ by L'Hospital's Rule} \\ &= \lim_{n \to \infty} \frac{\left( \frac{a}{3} \right) ^n \left[ \ln{ \left( \frac{a}{3} \right) } \right] ^2 }{2} \textrm{ by L'Hospital's Rule again} \\ &\to \infty \textrm{ as } n \to \infty \end{align*}$

Since this limit is not 0 when $\displaystyle \begin{align*} |a| > 3 \end{align*}$, the series can not possibly converge when $\displaystyle \begin{align*} |a| > 3 \end{align*}$. Thus the series is divergent if $\displaystyle \begin{align*} |a| > 3 \end{align*}$.
 
Fermat said:
Prove that the series of $\frac{a^n}{n^23^n}$ diverges where $a$ is a complex number with $|a|{\geq}3$

The series $\sum_{n = 1}^\infty \frac{a^n}{n^2 3^n}$ actually converges when $|a| = 3$, but diverges when $|a| > 3$.

If $|a| = 3$, then $a = 3e^{i\theta}$ for some real number $\theta$. The series reduces to

(*) $\displaystyle \sum_{n = 1}^\infty \frac{e^{in\theta}}{n^2}$.

Since $|e^{in\theta}/n^2| = 1/n^2$ for all $n$ and $\sum_{n = 1}^\infty 1/n^2$ converges (by the integral test), the series (*) converges absolutely; in particular, it converges.

If $|a| > 3$, then

$\lim_{n\to\infty} \left|\frac{a^n}{n^2 3^n}\right|^{1/n} = \lim_{n\to\infty} \frac{1}{n^{2/n}} \frac{|a|}{3} = \frac{|a|}{3} > 1$,

and so $\sum_{n = 1}^\infty \frac{a^n}{n^2 3^n}$ diverges by the root test.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K