- #1

- 4

- 0

Ʃ [itex]\frac{1}{e^{p}}[/itex] = [itex]\frac{1}{e^2}[/itex]+[itex]\frac{1}{e^3}[/itex]+[itex]\frac{1}{e^5}[/itex]+[itex]\frac{1}{e^7}[/itex]+[itex]\frac{1}{e^{11}}[/itex]+[itex]\frac{1}{e^{13}}[/itex]+[itex]\frac{1}{e^{17}}[/itex]+...

p[itex]\in[/itex]P

Brute force simulation gives me

~0.19279118970439518

Is there an elementary, non-transient solution?