- 3,372
- 465
I have to solve the differential equation
y''+(1-t) y' + y= sin(2t)
can someone judge this?
How could I continue it?
y=\sum_{n=0}^{∞}{a_{n} t^{n}}
y'=\sum_{n=1}^{∞}{a_{n} n t^{n-1}}
y''=\sum_{n=2}^{∞}{a_{n} n(n-1) t^{n-2}}
sin(2t)=\sum_{n=0}^{∞}{\frac{2^{2n}}{2n!} t^{2n}}y''+(1-t) y' + y= sin(2t)
\sum_{n=2}^{∞}{a_{n} n(n-1) t^{n-2}}+\sum_{n=1}^{∞}{a_{n} n (1-t)t^{n-1}}+\sum_{n=0}^{∞}{a_{n} t^{n}}=\sum_{n=0}^{∞}{\frac{2^{2n}}{2n!} t^{2n}}
\sum_{n=2}^{∞}{a_{n} n(n-1) t^{n-2}}+\sum_{n=1}^{∞}{a_{n} n t^{n-1}}-\sum_{n=1}^{∞}{a_{n} n t^{n}}+\sum_{n=0}^{∞}{a_{n} t^{n}}=\sum_{n=0}^{∞}{\frac{2^{2n}}{2n!} t^{2n}}
\sum_{k=0}^{∞}{a_{k+2} (k+2)(k+1) t^{k}}+\sum_{k=0}^{∞}{a_{k+1} (k+1) t^{k}}-\sum_{k=0}^{∞}{a_{k} k t^{k}}+\sum_{k=0}^{∞}{a_{k} t^{k}}=\sum_{k=0}^{∞}{\frac{2^{2k}}{2k!} t^{2k}}
\sum_{k=0}^{∞}{(a_{k+2} (k+2)(k+1)+a_{k+1} (k+1) -a_{k} k + a_{k}) t^{k}}=\sum_{k=0}^{∞}{\frac{2^{2k}}{2k!} t^{2k}}
\sum_{k=0}^{∞}{(a_{k+2} (k+2)(k+1)+a_{k+1} (k+1)+ (1-k) a_{k}) t^{k}}=\sum_{k=0}^{∞}{\frac{2^{2k}}{2k!} t^{2k}}
\sum_{m=0}^{∞}{(a_{2m+2} (2m+2)(2m+1)+a_{2m+1} (2m+1)+ (1-2m) a_{2m}) t^{2m}}=\sum_{m=0}^{∞}{\frac{2^{2m}}{2m!} t^{2m}}a_{2m+2} (2m+2)(2m+1)+a_{2m+1} (2m+1)+ (1-2m) a_{2m}=\frac{2^{2m}}{2m!}
y''+(1-t) y' + y= sin(2t)
can someone judge this?
How could I continue it?
y=\sum_{n=0}^{∞}{a_{n} t^{n}}
y'=\sum_{n=1}^{∞}{a_{n} n t^{n-1}}
y''=\sum_{n=2}^{∞}{a_{n} n(n-1) t^{n-2}}
sin(2t)=\sum_{n=0}^{∞}{\frac{2^{2n}}{2n!} t^{2n}}y''+(1-t) y' + y= sin(2t)
\sum_{n=2}^{∞}{a_{n} n(n-1) t^{n-2}}+\sum_{n=1}^{∞}{a_{n} n (1-t)t^{n-1}}+\sum_{n=0}^{∞}{a_{n} t^{n}}=\sum_{n=0}^{∞}{\frac{2^{2n}}{2n!} t^{2n}}
\sum_{n=2}^{∞}{a_{n} n(n-1) t^{n-2}}+\sum_{n=1}^{∞}{a_{n} n t^{n-1}}-\sum_{n=1}^{∞}{a_{n} n t^{n}}+\sum_{n=0}^{∞}{a_{n} t^{n}}=\sum_{n=0}^{∞}{\frac{2^{2n}}{2n!} t^{2n}}
\sum_{k=0}^{∞}{a_{k+2} (k+2)(k+1) t^{k}}+\sum_{k=0}^{∞}{a_{k+1} (k+1) t^{k}}-\sum_{k=0}^{∞}{a_{k} k t^{k}}+\sum_{k=0}^{∞}{a_{k} t^{k}}=\sum_{k=0}^{∞}{\frac{2^{2k}}{2k!} t^{2k}}
\sum_{k=0}^{∞}{(a_{k+2} (k+2)(k+1)+a_{k+1} (k+1) -a_{k} k + a_{k}) t^{k}}=\sum_{k=0}^{∞}{\frac{2^{2k}}{2k!} t^{2k}}
\sum_{k=0}^{∞}{(a_{k+2} (k+2)(k+1)+a_{k+1} (k+1)+ (1-k) a_{k}) t^{k}}=\sum_{k=0}^{∞}{\frac{2^{2k}}{2k!} t^{2k}}
\sum_{m=0}^{∞}{(a_{2m+2} (2m+2)(2m+1)+a_{2m+1} (2m+1)+ (1-2m) a_{2m}) t^{2m}}=\sum_{m=0}^{∞}{\frac{2^{2m}}{2m!} t^{2m}}a_{2m+2} (2m+2)(2m+1)+a_{2m+1} (2m+1)+ (1-2m) a_{2m}=\frac{2^{2m}}{2m!}
Last edited by a moderator: