Proving the Series Sum of a Trigonometric Function with Exponentials

  • Thread starter Thread starter arpon
  • Start date Start date
  • Tags Tags
    series sum
Click For Summary
SUMMARY

The forum discussion centers on proving the series sum of a trigonometric function with exponentials, specifically the equation $$\sum _{n=1,3,5...} \frac{1}{n} e^{-nx} \sin{ny} = \frac{1}{2}\tan^{-1} \left(\frac{\sin{y}}{\sinh{x}}\right)$$. The proof employs identities related to odd series and logarithmic functions, ultimately demonstrating the relationship through the manipulation of complex exponentials. Key identities used include $$\sum_{n\,\textrm{odd}}\frac{x^n}{n}=\frac 1 2 \ln \left(\frac {1+x} {1-x} \right)$$ and $$\tan^{-1}x=\frac{i}{2}\ln\left(\frac{i+x}{i-x}\right)$$.

PREREQUISITES
  • Understanding of complex numbers and exponentials
  • Familiarity with trigonometric identities and series
  • Knowledge of logarithmic functions and their properties
  • Experience with series convergence and manipulation techniques
NEXT STEPS
  • Study the derivation and applications of the series $$\sum_{n\,\textrm{odd}}\frac{x^n}{n}$$
  • Learn about the properties and applications of the arctangent function in complex analysis
  • Explore the relationship between hyperbolic functions and exponential functions
  • Investigate advanced techniques in series convergence and manipulation
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus, particularly those working with series and trigonometric functions in complex analysis.

arpon
Messages
234
Reaction score
16

Homework Statement


Prove that,
$$\sum _{n=1,3,5...} \frac{1}{n} e^{-nx} \sin{ny} = \frac{1}{2}\tan^{-1} (\frac{\sin{y}}{\sinh{x}})$$

Homework Equations



$$\tan^{-1}{x} = x - \frac{x^3}{3} +\frac{x^5}{5} - ... $$

3. The Attempt at a Solution

$$\sum _{n=1,3,5...} \frac{1}{n} e^{-nx} \sin{ny}$$
$$= \sum _{n=1,3,5...} \frac{1}{n} e^{-nx} Im(e^{i ny})$$
$$= \sum _{n=1,3,5...} \frac{ Im(e^{(-x+iy)n})}{n} $$
$$=Im( \sum _{n=1,3,5...} \frac{z^n}{n}) $$
where ##z=e^{-x+iy}##.
I am stuck here. Any help will be appreciated.
 
Physics news on Phys.org
Looking at ##\sum_n \frac {(iz)^n}{n}## looks promising. Note the sum over all n >=1.
 
  • Like
Likes   Reactions: arpon
Member warned that giving full solutions is not allowed at this site
Preliminaries... I'm going to use 2 identities.
Identity 1: $$\displaystyle \sum_{n\,\textrm{odd}}\frac{x^n}{n}=\frac 1 2 \ln \left(\frac {1+x} {1-x} \right)$$
Proof: From the Maclaurin expansion of ##\ln (1+x)## and ##\ln(1-x)##, we get,
$$\ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots$$
$$\ln (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}-\ldots$$
Subtracting the 2nd expression from the 1st, we get,
$$\ln (1+x)-\ln (1-x)=2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\ldots\right)=2\sum_{n\,\textrm{odd}}\frac{x^n}{n}$$
$$ \therefore \sum_{n\,\textrm{odd}}{\frac{x^n}{n}} = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right) $$Identity 2: $$\displaystyle \tan^{-1}x=\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right)$$
Proof: Let, ## \tan^{-1}x=w ##. So,
$$ x=\tan w=\frac{\sin w}{\cos w}= \frac{\frac{e^{iw}-e^{-iw}}{2i}}{\frac{e^{iw}+e^{-iw}}{2}}= \frac{1}{i}\cdot\frac{e^{iw}-e^{-iw}}{e^{iw}+e^{-iw}} $$
\begin{align}
& \therefore x=\frac{1}{i}\cdot\frac{e^{iw}-e^{-iw}}{e^{iw}+e^{-iw}} \nonumber \\
& \Rightarrow x=-i\cdot\frac{e^{iw}-e^{-iw}}{e^{iw}+e^{-iw}} \nonumber\\
& \Rightarrow x(e^{iw}+e^{-iw})=-i(e^{iw}-e^{-iw}) \nonumber \\
& \Rightarrow e^{iw}(i+x)=e^{-iw}(i-x) \nonumber \\
& \Rightarrow e^{i2w}=\frac{i-x}{i+x} \nonumber \\
& \Rightarrow i2w=\ln\left(\frac{i-x}{i+x}\right) \nonumber \\
& \Rightarrow w=\frac{1}{2i}\cdot\ln\left(\frac{i-x}{i+x}\right)=-\frac{i}{2}\ln\left(\frac{i-x}{i+x}\right)=\frac{i}{2}\ln\left(\frac{i+x}{i-x}\right) \nonumber \\
& \therefore \tan^{-1}x=\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right) \nonumber \\
\end{align}

Now, for the proof of the problem...
\begin{align}
\sum_{n\, \textrm{odd}} \frac{1}{n} e^{-nx} \sin{ny} & = \sum_{n\, \textrm{odd}} \frac{1}{n} e^{-nx}\cdot \frac{e^{iny}-e^{-iny}}{2i} \nonumber\\
& = \sum_{n\, \textrm{odd}} \frac 1 n\cdot \frac{e^{-nx+iny}-e^{-nx-iny}}{2i} \nonumber\\
&= \frac{1}{2i} \left[\sum_{n\, \textrm{odd}} \frac{(e^{-x+iy})^n}{n} -\sum_{n\, \textrm{odd}} \frac{(e^{-x-iy})^n}{n}\right] \nonumber\\
&= \frac{1}{2i} \left[\sum_{n\, \textrm{odd}} \frac{z^n}{n} - \sum_{n\, \textrm{odd}} \frac{{\bar z}^n}{n}\right]\qquad (z=e^{-x+iy},\; \bar z = e^{-x-iy}) \nonumber\\
&= \frac{1}{2i}\left[\frac{1}{2}\ln \left(\frac{1+z}{1-z}\right)-\frac{1}{2}\ln \left(\frac{1+\bar z}{1-\bar z}\right)\right]\quad \textrm{(Identity 1)} \nonumber\\
&= \frac 1 2 \left[\frac{1}{2i}\ln \left(\frac{1+z}{1-z}\right)-\frac{1}{2i}\ln \left(\frac{1+\bar z}{1-\bar z}\right)\right] \nonumber\\
&= \frac 1 2 \left[-\frac{i}{2}\ln \left(\frac{i+iz}{i-iz}\right)+\frac{i}{2}\ln \left(\frac{i+i\bar z}{i-i\bar z}\right)\right] \nonumber\\
&= \frac 1 2 \left[-\tan^{-1}iz+\tan^{-1}i\bar z\right] \qquad \textrm{(Identity 2)} \nonumber\\
&= \frac 1 2 \left[\tan^{-1}i\bar z-\tan^{-1}iz\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{i\bar z-iz}{1+i^2z\bar z}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{ie^{-x-iy}-ie^{-x+iy}}{1-e^{-x-iy}\cdot e^{-x+iy}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{ie^{-x}(e^{-iy}-e^{iy})}{1-e^{-2x}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{ie^{-x}(-2i\sin y)}{1-e^{-2x}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{2\sin y}{e^x-e^{-x}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left[\frac{\sin y}{\frac{e^x-e^{-x}}{2}}\right] \nonumber\\
&= \frac 1 2 \tan^{-1}\left(\frac{\sin y}{\sinh y}\right) \nonumber\\
\end{align}

And... we're done. :D :D :D
 
  • Like
Likes   Reactions: arpon

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K