MHB Short topical webpage title: Proving Properties of Unital Rings

  • Thread starter Thread starter fredpeterson57
  • Start date Start date
  • Tags Tags
    Rings
Click For Summary
In the discussion on proving properties of unital rings, participants focus on two main propositions. First, they explore the proof that every unital ring of characteristic zero is infinite, considering a proof by contradiction and emphasizing that distinct natural number multiples of 1 must be different. Second, they examine the characteristic of an integral domain, asserting that it can only be 0 or prime, and propose that if it were composite or 1, it would contradict the definition of an integral domain due to the presence of zero-divisors. The conversation highlights the logical connections necessary to establish these properties within the framework of ring theory. Overall, the discussion aims to clarify these foundational concepts in algebra.
fredpeterson57
Messages
1
Reaction score
0
Context: Let R be a unital ring. The characteristic of R is the smallest positive integer n such that $n\cdot 1=0$. If no such n exists, we say R has characteristic 0. We denote the characteristic of a ring by char(R).
I'm particularly lost as to how to prove the following propositions:
(a) Every unital ring of characteristic zero is infinite (I'm thinking of using a proof by contradiction for this, but I have no idea how)

(b) The characteristic of an integral domain is either 0 or prime (if I somehow manage to show that if the characteristic of an integral domain is composite or 1, then it is not an integral domain, then I think I will be able to prove this).
 
Physics news on Phys.org
fredpeterson57 said:
Context: Let R be a unital ring. The characteristic of R is the smallest positive integer n such that $n\cdot 1=0$. If no such n exists, we say R has characteristic 0. We denote the characteristic of a ring by char(R).
I'm particularly lost as to how to prove the following propositions:
(a) Every unital ring of characteristic zero is infinite (I'm thinking of using a proof by contradiction for this, but I have no idea how)

(b) The characteristic of an integral domain is either 0 or prime (if I somehow manage to show that if the characteristic of an integral domain is composite or 1, then it is not an integral domain, then I think I will be able to prove this).
(a) Show that if the ring has characteristic zero then the elements $n\cdot 1\ (n\in\Bbb{N})$ are all different.

(b) If the characteristic $n$ of the ring is a composite number, say $n = pq$, then $0 = n\cdot1 = pq\cdot1 = (p\cdot1)(q\cdot1)$. Now use the fact that an integral domain does not have zero-divisors to show that either $p\cdot1=0$ or $q\cdot1=0$ (contradicting the fact that $n$ is the smallest number with that property).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
854
  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
3K