Hypertorus Exploration and Mathematics
Well, I'm certainly not sure what I want to do. I've been a professional bike mechanic for 14 years ( the kind you pedal ), and I've made some interesting mathematical discoveries. Lately, in the last 7 months, it seems that I have acquired knowledge of far-reaching things, into unexplored territory. These things are known about theoretically, but I'm not sure to what extent.
And, it seemed by accident, or pure chance that I would be able to learn it. On a quiet forum, somewhere on the internet, is a funny-looking notation system, called toratopic notation. It was made by others, before I joined. It just so happens to stand for the equations of multidimensional toroids. By reducing the implicit surface equation for, say a circle, sphere, and torus, we can get something like:
circle : (II) : x^2 + y^2 - R1^2 = 0
sphere : (III) : x^2 + y^2 + z^2 - R1^2 = 0
torus : ((II)I) : (sqrt(x^2 + y^2) - R1)^2 + z^2 - R2^2 = 0
The end result is a combinatoric sequence of surfaces of revolution. By repeating these rotations into various hyperplanes, one can build a notation sequence for a shape, which converts into an implicit surface equation.
Going beyond 3D, we have many more possible shapes, per dimension:
4D:
(IIII) - x^2 + y^2 + z^2 + w^2 - R1^2 = 0
((II)II) - (sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2 - R2^2 = 0
((II)(II)) - (sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 - R2^2 = 0
((III)I) - (sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2 - R2^2 = 0
(((II)I)I) - (sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2) - R2)^2 + w^2 - R3^2 = 0
5D:
(IIIII) - x^2 + y^2 + z^2 + w^2 + v^2 - R1^2 = 0
((II)III) - (sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2 + v^2 - R2^2 = 0
((II)(II)I) - (sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 + v^2 - R2^2 = 0
((III)II) - (sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2 + v^2 - R2^2 = 0
(((II)I)II) - (sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2) - R2)^2 + w^2 + v^2 - R3^2 = 0
((III)(II)) - (sqrt(x^2 + y^2 + z^2) - R1a)^2 + (sqrt(w^2 + v^2) - R1b)^2 - R2^2 = 0
(((II)I)(II)) - (sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2) - R2)^2 + (sqrt(w^2 + v^2) - R1b)^2 - R3^2 = 0
((IIII)I) - (sqrt(x^2 + y^2 + z^2 + w^2) - R1)^2 + v^2 - R2^2 = 0
(((II)II)I) - (sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2) - R2)^2 + v^2 - R3^2 = 0
(((II)(II))I) - ((sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 - R2)^2 + v^2 - R3^2 = 0
(((III)I)I) - (sqrt((sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2) - R2)^2 + v^2 - R3^2 = 0
((((II)I)I)I) - (sqrt((sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 ) - R2)^2 + w^2) - R3)^2 + v^2 - R4^2= 0
6D:
(IIIIII) - x^2 + y^2 + z^2 + w^2 + v^2 + u^2 - R1^2 = 0
((II)IIII) - (sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2 + v^2 + u^2 - R2^2 = 0
((II)(II)II) - (sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 + v^2 + u^2 - R2^2 = 0
((II)(II)(II)) - (sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 + (sqrt(v^2 + u^2) - R1c)^2 - R2^2 = 0
((III)III) - (sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2 + v^2 + u^2 - R2^2 = 0
(((II)I)III) - (sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2) - R2)^2 + w^2 + v^2 + u^2 - R3^2 = 0
((III)(II)I) - (sqrt(x^2 + y^2 + z^2) - R1a)^2 + (sqrt(w^2 + v^2) - R1b)^2 + u^2 - R2^2 = 0
(((II)I)(II)I) - (sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2) - R2)^2 + (sqrt(w^2 + v^2) - R1b)^2 + u^2 - R3^2 = 0
((III)(III)) - (sqrt(x^2 + y^2 + z^2) - R1a)^2 + (sqrt(w^2 + v^2 + u^2) - R1b)^2 - R2^2 = 0
(((II)I)(III)) - (sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2) - R2)^2 + (sqrt(w^2 + v^2 + u^2) - R1b)^2 - R3^2 = 0
(((II)I)((II)I)) - (sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2) - R2a)^2 + (sqrt((sqrt(w^2 + v^2) - R1b)^2 + u^2) - R2b)^2 - R3^2 = 0
((IIII)II) - (sqrt(x^2 + y^2 + z^2 + w^2) - R1)^2 + v^2 + u^2 - R2^2 = 0
(((II)II)II) - (sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2) - R2)^2 + v^2 + u^2 - R3^2 = 0
(((II)(II))II) - ((sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 - R2)^2 + v^2 + u^2 - R3^2 = 0
(((III)I)II) - (sqrt((sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2) - R2)^2 + v^2 + u^2 - R3^2 = 0
((((II)I)I)II) - (sqrt((sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 ) - R2)^2 + w^2) - R3)^2 + v^2 + u^2 - R4^2= 0
((IIII)(II)) - (sqrt(x^2 + y^2 + z^2 + w^2) - R1a)^2 + (sqrt(v^2 + u^2) - R1b)^2 - R2^2 = 0
(((II)II)(II)) - (sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2 + w^2) - R2)^2 + (sqrt(v^2 + u^2) - R1b)^2 - R3^2 = 0
(((II)(II))(II)) - (sqrt((sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2) - R2)^2 + (sqrt(v^2 + u^2) - R1c)^2 - R3^2 = 0
(((III)I)(II)) - (sqrt((sqrt(x^2 + y^2 + z^2) - R1a)^2 + w^2) - R2)^2 + (sqrt(v^2 + u^2) - R1b)^2 - R3^2 = 0
((((II)I)I)(II)) - (sqrt((sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2) - R2)^2 + w^2) - R3)^2 + (sqrt(v^2 + u^2) - R1b)^2 - R4^2 = 0
((IIIII)I) - (sqrt(x^2 + y^2 + z^2 + w^2 + v^2) - R1)^2 + u^2 - R2^2 = 0
(((II)III)I) - (sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2 + v^2) - R2)^2 + u^2 - R3^2 = 0
(((II)(II)I)I) - ((sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 + v^2 - R2)^2 + u^2 - R3^2 = 0
(((III)II)I) - (sqrt((sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2 + v^2) - R2)^2 + u^2 - R3^2 = 0
((((II)I)II)I) - (sqrt((sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 ) - R2)^2 + w^2 + v^2) - R3)^2 + u^2 - R4^2= 0
(((III)(II))I) - ((sqrt(x^2 + y^2 + z^2) - R1a)^2 + (sqrt(w^2 + v^2) - R1b)^2 - R2)^2 + u^2 - R3^2 = 0
((((II)I)(II))I) - ((sqrt((sqrt(x^2 + y^2) - R1a)^2 + z^2) - R2)^2 + (sqrt(w^2 + v^2) - R1b)^2 - R3)^2 + u^2 - R4^2 = 0
(((IIII)I)I) - (sqrt((sqrt(x^2 + y^2 + z^2 + w^2) - R1)^2 + v^2) - R2)^2 + u^2 - R3^2 = 0
((((II)II)I)I) - (sqrt((sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2 + w^2) - R2)^2 + v^2) - R3)^2 + u^2 - R4^2= 0
((((II)(II))I)I) - (sqrt(((sqrt(x^2 + y^2) - R1a)^2 + (sqrt(z^2 + w^2) - R1b)^2 - R2)^2 + v^2) - R3)^2 + u^2 - R4^2 = 0
((((III)I)I)I) - (sqrt((sqrt((sqrt(x^2 + y^2 + z^2) - R1)^2 + w^2 ) - R2)^2 + v^2) - R3)^2 + u^2 - R4^2= 0
(((((II)I)I)I)I) - (sqrt((sqrt((sqrt((sqrt(x^2 + y^2) - R1)^2 + z^2) - R2)^2 + w^2) - R3)^2 + v^2) - R4)^2 + u^2 - R5^2 = 0
As you can see, these are very large and complex surfaces of revolution, the basic concept behind a hypetorus. The number of hypertori in each dimension is 1,1,2,5,12,33,90,261, etc, which is the A000669 integer sequence on the OEIS. These equations and notations are defining discrete hypershapes in an n-dimensional Euclidean plane.
Once the equation is derived, one can reduce it to a 3D equation, as a cross section of the hypertorus. Then add rotate and translate parameters to move the slice around. I put these enormous functions into a great program, CalcPlot3D. It handles 3D implicit graphing quite well. While exploring the various functions for a shape, I'll see fascinating things happening all the time. That notation system can be used to interpret cross sections abstractly, too. By removing the uppercase " I " you make a cut, by setting that dimension to zero. Take 6D hypertorus (((II)I)((II)I)) for example:Dimensional Map of (((II)I)((II)I)) Hyperplane Intercepts
XYZWVU 6D Hyperplane
(((II)I)((II)I)) - 1x tiger duotorus
-------------------------------------
XYZWV 5D Intercepts
(((II)I)((I)I)) - 2x tigritoruses (((II)I)(II)) in 1x1x1x2x1 vert column
(((II)I)((II))) - 2x tigritoruses (((II)I)(II)) in major1 concentric pairs
--------------------------------------
XYZW 4D Intercepts
(((I)I)((I)I)) - 4x tigers ((II)(II)) in 2x1x2x1 vert square
(((II)I)((I))) - 4x ditoruses (((II)I)I) in 1x1x1x4 vert column
(((II))((II))) - 4x tigers ((II)(II)) in concentric maj1/maj2 pairs
(((I)I)((II))) - 4x tigers ((II)(II)) in maj2 concentric pairs in 2x1x1x1 line
(((II)I)(()I)) - empty
--------------------------------------
XYZ 3D Intercepts
(((I)I)((I))) - 8x torii ((II)I) in 4x1x2 vertical rectangle
(((II))((I))) - 8x torii ((II)I) in 2 concentric maj pairs along 1x1x4 vertical column
(((I)I)(()I)) - empty
(((II)I)(())) - empty
((()I)((II))) - empty
----------------------------------------
XY 2D Intercepts
(((I))((I))) - 16 circles in 4x4 squareUsing the notation sequence (((II)I)((II)I)), the implicit equation can be derived like this:
(((II)I)((II)I)) = 0
((II)I)((II)I) = 0
((xy)z)((wv)u) = 0
((x + y) +z) + ((w + v) +u) = 0
((x + y -R1a) +z -R2a) + ((w + v -R1b) +u- R2b) -R3 = 0
((x + y -R1a)^2 +z -R2a)^2 + ((w + v -R1b)^2 +u- R2b)^2 -R3^2 = 0
((sqrt(x + y) -R1a)^2 +z -R2a)^2 + ((w + v -R1b)^2 +u- R2b)^2 -R3^2 = 0
((sqrt(x + y) -R1a)^2 +z -R2a)^2 + ((sqrt(w + v) -R1b)^2 +u- R2b)^2 -R3^2 = 0
(sqrt((sqrt(x + y) -R1a)^2 +z) -R2a)^2 + ((sqrt(w + v) -R1b)^2 +u- R2b)^2 -R3^2 = 0
(sqrt((sqrt(x + y) -R1a)^2 +z) -R2a)^2 + (sqrt((sqrt(w + v) -R1b)^2 +u) -R2b)^2 -R3^2 = 0
(sqrt((sqrt(x^2 + y^2) -R1a)^2 +z^2) -R2a)^2 + (sqrt((sqrt(w^2 + v^2) -R1b)^2 +u^2) -R2b)^2 -R3^2 = 0
Establish diameter values for non-intersection, and make 3D equation from cut (((II))((I))) :
(sqrt((sqrt(x^2 + y^2) - 2)^2 + 0^2) -1)^2 + (sqrt((sqrt(z^2 + 0^2) - 2)^2 + 0^2) -1)^2 = 0.4^2
Establish rotate + translate parameters:
(sqrt((sqrt((x*sin(b) + a*cos(b))^2 + (y*sin(d) + c*cos(d))^2) - 2)^2) -1)^2 + (sqrt((sqrt(z^2 + (y*cos(d) - c*sin(d))^2) - 2)^2 + (x*cos(b) - a*sin(b))^2) -1)^2 - 0.3^2 = 0