- #1
Haorong Wu
- 415
- 90
- Homework Statement
- Given a state of a electron, ##\psi = \begin{pmatrix} \psi_{+} \\ \psi _{-} \end{pmatrix} =R \left ( r \right ) \begin{pmatrix} \sqrt {\frac 3 5} Y_0^0 + \sqrt {\frac 1 {10}} Y_1^1 +\sqrt {\frac 1 {10}} Y_1^-1 \\ \sqrt {\frac 1 5} Y_1^0 \end{pmatrix}##, what is the expectation of ##\left < S_x \right >## ?
- Relevant Equations
- None
I have two different solutions, and I do not know which one is correct and why the other one is wrong.
Solution 1.
In the ##L_z## space, the spin state is ##\begin{pmatrix} \sqrt { \frac 4 5} \\ \sqrt { \frac 1 5} \end{pmatrix}##, and ##S_x=\frac \hbar 2 \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix}##, so ##\left < S_x \right >=\begin{pmatrix} \sqrt { \frac 4 5} & \sqrt { \frac 1 5} \end{pmatrix} \frac \hbar 2 \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix} \begin{pmatrix} \sqrt { \frac 4 5} \\ \sqrt { \frac 1 5} \end{pmatrix}=\frac 2 5 \hbar##.
Solution 2.
##\left < S_x \right >=\int \begin{pmatrix} \psi_{+}^{*} & \psi_{-}^{*} \end{pmatrix} \frac \hbar 2 \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix} \begin{pmatrix} \psi_{+} \\ \psi_{-} \end{pmatrix} dr =0##.
I guess the problem is that I have not make clear whether the spatial functions should be involved in the calculations. Should the orbital momentums affect the calculation of spins?
Thanks!
Solution 1.
In the ##L_z## space, the spin state is ##\begin{pmatrix} \sqrt { \frac 4 5} \\ \sqrt { \frac 1 5} \end{pmatrix}##, and ##S_x=\frac \hbar 2 \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix}##, so ##\left < S_x \right >=\begin{pmatrix} \sqrt { \frac 4 5} & \sqrt { \frac 1 5} \end{pmatrix} \frac \hbar 2 \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix} \begin{pmatrix} \sqrt { \frac 4 5} \\ \sqrt { \frac 1 5} \end{pmatrix}=\frac 2 5 \hbar##.
Solution 2.
##\left < S_x \right >=\int \begin{pmatrix} \psi_{+}^{*} & \psi_{-}^{*} \end{pmatrix} \frac \hbar 2 \begin{pmatrix} 0& 1 \\ 1& 0 \end{pmatrix} \begin{pmatrix} \psi_{+} \\ \psi_{-} \end{pmatrix} dr =0##.
I guess the problem is that I have not make clear whether the spatial functions should be involved in the calculations. Should the orbital momentums affect the calculation of spins?
Thanks!