MHB Show convergence of weierstrass product

Click For Summary
The discussion centers on the convergence of the Weierstrass product $f(z) = \prod_{n=1}^{\infty}(1 + z^{2^n})$ within the open disc $D(0,1)$. It is established that the series $\sum_{n=0}^{\infty}|z|^{2^n}$ converges for $|z| < 1$, leading to the conclusion that $f(z)$ converges to $\frac{1}{1-z}$. The uniform convergence on compact subsets of $D(0,1)$ is questioned, with suggestions to apply the comparison test. The discussion also addresses the need to demonstrate the absence of zeros in compact subsets and the behavior of partial products. Finally, the choice of $k_n$ for ensuring uniform or absolute convergence is sought, emphasizing the need for careful selection to maintain convergence properties.
Dustinsfl
Messages
2,217
Reaction score
5
$f(z) = \prod\limits_{n=1}^{\infty}\left(1+z^{2^n}\right)$ converges on the open disc $D(0,1)$ to the function $\dfrac{1}{1-z}$.

To show convergence, I look at
$$
\sum_{n=1}^{\infty}\left|z^{2^n}\right|
$$
correct?The sum, $\sum\limits_{n = 0}^{\infty}|z|^{2^{n}}$, converges for $|z| < 1$ i.e. we have a geometric series.
So
$$
\sum_{n = 0}^{\infty}|z|^{2^{n}} = \frac{1}{1 - z},
$$
for $|z| < 1$

Is this convergence uniform on compact subsets of $D(0,1)$?
 
Last edited:
Physics news on Phys.org
This should actually be done by the comparison test.

For $|z| < 1$, we have that
$$
\sum_{n=0}^{\infty}|z|^{2^n}\leq \sum_{n=0}^{\infty}|z|^n
$$

So now I need to show by partial products that there are no zeros in $K\subset D(0,1)$. So I need to find an N such that forall n > N this holds. I am looking for some guidance on this piece.

$$
f(z) = \prod_{n=0}^{N}\left(1+z^{2^n}\right) \prod_{n=N+1}^{\infty}\left(1+z^{2^n}\right)
$$

We need to fix $R\in\mathbb{R}^+$. Let $N\in\mathbb{N}$ such that $|z_N|\leq 2R < |z_{N+1}$ (is this correct-the inequalities?).

The first partial product is finite on $D(0,1)$ and the second partial product behaves well on $D(0,1)$.

What would be my choice of $k_n$ for this product?
 
Last edited:
So continuing.Then for $|z|\leq R$ and $n>N$ we have
$$
\left|\frac{z}{z_n}\right| <\frac{1}{2}, \quad\forall n>N
$$
so by Lemma: If $|z|\leq 1/2$, then $\log\left[\prod\limits_{n=1}^{\infty}\left(1-\frac{z}{z_n}\right)\right]\leq 2|z|^n$,
$$
\log\left|\left[\prod\limits_{n=1}^{\infty}\left(1-z^{2^n}\right)\right]\right| = \sum_{n=1}^{\infty}\left|\log(1+z^{2^n})\right| \leq 2\left(\frac{R}{z_n}\right)^{k_n}.
$$What choices of $k_n$ will allow convergence(uniform/absolute?).
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K