Show Equivalence: $a^d \equiv 1 \pmod n$

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Equivalence
Click For Summary
SUMMARY

The discussion centers on proving that if \( a^{n-1} \equiv 1 \pmod{n} \) for \( n = pq \) (where \( p \) and \( q \) are distinct primes) and \( d = \gcd(p-1, q-1) \), then \( a^d \equiv 1 \pmod{n} \). Participants explore various mathematical approaches, including Euler's theorem and the Chinese Remainder Theorem, to establish this equivalence. Ultimately, it is concluded that \( a^d \equiv 1 \pmod{n} \) follows from the properties of \( d \) and the relationships between \( p \) and \( q \).

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with Euler's theorem
  • Knowledge of the Chinese Remainder Theorem
  • Basic concepts of prime numbers and their properties
NEXT STEPS
  • Study the proof of Euler's theorem in detail
  • Learn about the applications of the Chinese Remainder Theorem in number theory
  • Explore the properties of the greatest common divisor (gcd) in modular contexts
  • Investigate further implications of \( a^d \equiv 1 \pmod{n} \) in cryptographic algorithms
USEFUL FOR

Mathematicians, students studying number theory, and cryptographers interested in modular arithmetic and its applications in secure communications.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Suppose that $p,q$ are two distinct primes , $n=pq$ and $d=gcd(p-1,q-1)$.
I want to show that if $a^{n-1} \equiv 1 \pmod{n}$ for some $a$ then $a^d \equiv 1 \pmod{n}$.

That's what I have tried:

$
a^{pq-1}\equiv 1 \pmod n \Rightarrow a^{pq-p+p-1}\equiv 1 \pmod n \Rightarrow a^{p(q-1)+(p-1)}\equiv 1 \pmod n \Rightarrow a^{Ad+Bd}\equiv 1 \pmod n$ for some $A,B \in \mathbb{Z}$.
Then we have $ a^{d(A+B)}\equiv 1 \pmod n \Rightarrow \left (a^{d}\right )^{A+B}\equiv 1 \pmod n$.

But from this, we cannot deduce that $a^d \equiv 1 \pmod{n}$, can we? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

Suppose that $p,q$ are two distinct primes , $n=pq$ and $d=gcd(p-1,q-1)$.
I want to show that if $a^{n-1} \equiv 1 \pmod{n}$ for some $a$ then $a^d \equiv 1 \pmod{n}$.

That's what I have tried:

$
a^{pq-1}\equiv 1 \pmod n \Rightarrow a^{pq-p+p-1}\equiv 1 \pmod n \Rightarrow a^{p(q-1)+(p-1)}\equiv 1 \pmod n \Rightarrow a^{Ad+Bd}\equiv 1 \pmod n$ for some $A,B \in \mathbb{Z}$.
Then we have $ a^{d(A+B)}\equiv 1 \pmod n \Rightarrow \left (a^{d}\right )^{A+B}\equiv 1 \pmod n$.

But from this, we cannot deduce that $a^d \equiv 1 \pmod{n}$, can we? (Thinking)

Hey evinda! (Smile)

I haven't figured it out yet. :(

However, I can see a couple of approaches...
According to Euler we have:
$$a^{\phi(pq)} \equiv a^{(p-1)(q-1)} \equiv 1 \pmod{pq}$$
And according to the Chinese Remainder Theorem we have:
$$(a^{pq-1}, a^{pq-1}) \equiv (1 \bmod p,1 \bmod q)\quad\Rightarrow\quad a^{q-1}\equiv 1 \pmod p \quad\land\quad a^{p-1}\equiv 1 \pmod q$$
(Thinking)
 
We also have that $d=x(p-1)+y(q-1)$ for some $x,y \in \mathbb{Z}$ and from this and what you said above it follows that $a^d \equiv 1 \pmod{n}$. (Thinking)
 
Last edited:
evinda said:
We also have that $d=x(p-1)+y(q-1)$ for some $x,y \in \mathbb{Z}$ and from this and what you said above it follows that $a^d \equiv 1 \pmod{n}$. (Thinking)

Ah yes. Nice! (Smile)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
3K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K