MHB Show Metric Proves All Points Inside Circle Have Same Center

  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Geometric
Julio1
Messages
66
Reaction score
0
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$

Hello MHB :). Any hint for the problem?, thanks!.
 
Mathematics news on Phys.org
Hi, Julio.

Julio said:
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$
Could you give the definition of a circle center? Also, a metric is a function of two arguments, while $d_p(n+m)$ has one argument. Finally, what is $p$?
 
Julio said:
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$
I suppose you mean $d_p(m,n)=|n-m|_p$ where $d_p$ is the $p$-adic metric on $\mathbb{Q},$ and disc instead of circle. If so, have a look https://www.colby.edu/math/faculty/Faculty_files/hollydir/Holly01.pdf.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top