MHB Show Metric Proves All Points Inside Circle Have Same Center

  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Geometric
Click For Summary
The discussion centers on proving that all points within a circle share the same center, using the metric $d_p(n+m)=|n-m|_p$. Participants clarify that the correct notation for the metric should be $d_p(m,n)=|n-m|_p$, which refers to the $p$-adic metric on the rational numbers. There is a request for a definition of a circle's center and clarification on the variable $p$. A link to a relevant resource is provided for further exploration of the topic. The conversation emphasizes the importance of precise definitions and notation in mathematical discussions.
Julio1
Messages
66
Reaction score
0
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$

Hello MHB :). Any hint for the problem?, thanks!.
 
Mathematics news on Phys.org
Hi, Julio.

Julio said:
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$
Could you give the definition of a circle center? Also, a metric is a function of two arguments, while $d_p(n+m)$ has one argument. Finally, what is $p$?
 
Julio said:
Show that all point inside of an circle is his center. Consider the metric $d_p(n+m)=|n-m|_p.$
I suppose you mean $d_p(m,n)=|n-m|_p$ where $d_p$ is the $p$-adic metric on $\mathbb{Q},$ and disc instead of circle. If so, have a look https://www.colby.edu/math/faculty/Faculty_files/hollydir/Holly01.pdf.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K