Show N is a normal subgroup and G/N has finite element

Click For Summary
SUMMARY

The discussion centers on proving that N is a normal subgroup of an abelian group G and that the quotient group G/N contains only the identity element as its finite order element. It establishes that if cN has finite order n in G/N, then c^n must belong to N, indicating that c itself has finite order. Consequently, this leads to the conclusion that the only element with finite order in G/N is the identity coset N.

PREREQUISITES
  • Understanding of group theory concepts, specifically normal subgroups and quotient groups.
  • Familiarity with the properties of abelian groups.
  • Knowledge of finite order elements in group theory.
  • Basic proficiency in mathematical notation and operations involving groups.
NEXT STEPS
  • Study the properties of normal subgroups in detail, focusing on their significance in group theory.
  • Learn about quotient groups and their applications in algebra.
  • Explore the concept of finite order elements and their implications in group structures.
  • Investigate examples of abelian groups and their normal subgroups to solidify understanding.
USEFUL FOR

This discussion is beneficial for students and researchers in abstract algebra, particularly those studying group theory, as well as educators looking to explain the concepts of normal subgroups and quotient groups effectively.

Robb
Messages
225
Reaction score
8
Homework Statement
Let G be an abelian group. Show that the elements of finite order in G form a
normal subgroup N, and that the only element of finite order in G/N is the identity.
Relevant Equations
N/A
Clearly e ∈ N. If a, b ∈ N, say ##a^k = b^l = e##, for some k,l ∈ N, then ##(ab)^{kl} = (a^k )^l (b^l )^k = e^l e^k = e##; thus, ab ∈ N. Also, ##|a|=|a^{−1}|##, so ##a^{−1}## ∈ N. Thus, N is a subgroup. As G is abelian, it is normal. Take any c ∈ G. If, for some n ∈ N, we have ##(cN)^n = eN##, then ##c^n## ∈ N; that is, ##c^n## has finite order, so ##c^{nm} = e## for some m ∈ N. In other words, c ∈ N, so cN = eN.

This is the answer from the back of the book and I am trying to dissect it to understand it. What I don't understand is the part about the only element of finite order in G/N is the identity. So, how do we know ##c^n = e##? How do we know this is the only element of finite order? Why is m necessary (as an exponent to c) if ##c^n = e##? Any help would be greatly appreciated!
 
Physics news on Phys.org
You assume that ##cN\in G/N## has finite order ##n##. This means ##(cN)^n=c^nN## is the identity coset ##N##. Hence ##c^n\in N##. This implies ##c^n## has finite order, and so ##c## also has finite order. By definition, this gives us ##c\in N##, and ##cN=N## is the identity coset. This means that the identity element ##N\in G/N## is the only element of finite order.
 
Infrared said:
You assume that ##cN\in G/N## has finite order ##n##. This means ##(cN)^n=c^nN## is the identity coset ##N##. Hence ##c^n\in N##. This implies ##c^n## has finite order, and so ##c## also has finite order. By definition, this gives us ##c\in N##, and ##cN=N## is the identity coset. This means that the identity element ##N\in G/N## is the only element of finite order.
Much appreciated! I think I get it.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K