dgf
- 1
- 0
I want to show the boundedness of the nonlinear system below. Assume, ##N, P, K, t > 0## and all other parameters to be positive.
$$\frac{{d}N}{{d}t} ~=~ rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N}$$
$$\frac{{d}P}{{d}t} ~=~ \frac{b(1 - m)NP}{1 + \gamma(1 - m)N} - cP$$
$$\frac{{d}K}{{d}t} ~=~ \frac{(K - \alpha)(p - K)}{q + K}$$
My attempt is this:
We show that the system is bounded by showing each equation is bounded.
For, ##\frac{{d}K}{{d}t} = \frac{(K - \alpha)(p - K)}{q + K}##, the
denominator ##q+K>0## ensures it is well-defined. Now if ##\alpha<p## then ##K##
is bounded between ##\alpha## and ##p## and if ##\alpha>p##, then ##K## is bounded between
##p## and ##\alpha##. Therefore, ##\min(\alpha,p)\le K \le \max(\alpha,p)##.
Now for, ##\frac{{d}N}{{d}t} = rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} \implies \frac{{d}N}{{d}t} \le rN\left(1 - \frac{N}{K}\right)##. Now since ##K## is bounded, we choose the upper and lower bounds to be ##K_{max}## and ##K_{min}## respectively. Then
##K\le K_{max} \implies - \frac{N}{K} \le \frac{N}{K_{max}}##. Therefore, for any
##\epsilon >0##, we choose ##N_{upper} = K_{max} + \epsilon##. So we have,
##\frac{{d}N}{{d}t} \le rN\left(1 - \frac{N}{K_{max}}\right) < -rN\frac{\epsilon}{K_{max}} < 0##. This implies it is always bounded above.
Now for, ##\frac{{d}P}{{d}t} ~=~ \frac{b(1 - m)NP}{1 + \gamma(1 - m)N} - cP##,
we consider the Lyapunov function ##V(t)## defined as:
$$V(t) = N(t) + \frac{a}{b}P(t)$$
Since ##N(t) \ge 0## and ##P(t) \ge 0##, it follows that ##V(t) \ge 0##.
Let's compute the derivative of $$V(t)$$ with respect to time:
$$ \frac{dV}{dt} = \frac{dN}{dt} + \frac{a}{b}\frac{dP}{dt} $$
Substitute the expressions for $$\frac{dN}{dt}$$ and $$\frac{dP}{dt}$$ from equations (1) and (2):
$$\begin{align*}
\frac{dV}{dt} &= \left[ rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} \right] + \frac{a}{b}\left[ \frac{b(1 - m)NP}{1 + \gamma(1 - m)N} - cP \right] \\
\frac{dV}{dt} &= rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} + \frac{ab(1 - m)NP}{b(1 + \gamma(1 - m)N)} - \frac{ac}{b}P \\
\frac{dV}{dt} &= rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} + \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} - \frac{ac}{b}P
\end{align*}$$
The terms cancel out:
$$ \frac{dV}{dt} = rN\left(1 - \frac{N}{K}\right) - \frac{ac}{b}P $$
We know that ##K(t) \ge K_{min}## and ##N(t) \ge 0##. The function ##f(N) = rN\left(1 - \frac{N}{K}\right)## is a parabola opening downwards with roots at ##N=0## and ##N=K##. Its maximum value is achieved at ##N = K/2##, with the value ##r(K/2)(1 - 1/2) = rK/4##.
Since ##K(t) \le K_{max}##, the maximum value of ##rN\left(1 - \frac{N}{K}\right)## for all possible ##K(t)## is bounded by ##rK_{max}/4##.
Therefore, we can write:
$$ \frac{dV}{dt} \le \frac{rK_{max}}{4} - \frac{ac}{b}P $$
Let $$M_V = \frac{rK_{max}}{4}$$, which is a positive constant. Then:
$$ \frac{dV}{dt} \le M_V - \frac{ac}{b}P $$
Now, consider the case where ##P(t)## becomes sufficiently large. If ##P(t) > \frac{M_V b}{ac}##, then:
$$ M_V - \frac{ac}{b}P < M_V - \frac{ac}{b}\left(\frac{M_V b}{ac}\right) = M_V - M_V = 0 $$
So, if ##P(t) > \frac{M_V b}{ac}##, then ##\frac{dV}{dt} < 0##. This implies that if ##P(t)## exceeds this threshold, the value of ##V(t)## will start to decrease. Since ##V(t) = N(t) + \frac{a}{b}P(t)## and ##N(t) \ge 0##, a decrease in ##V(t)## when ##P(t)## is large means that ##P(t)## must also decrease. Thus, ##P(t)## cannot grow indefinitely.
Therefore, ##P(t)## is ultimately bounded above. Since ##P(t) \ge 0##, it is also bounded below. So, there exists a constant ##P_{upper} > 0## such that ##0 \le P(t) \le P_{upper}## for all sufficiently large ##t##.
$$\frac{{d}N}{{d}t} ~=~ rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N}$$
$$\frac{{d}P}{{d}t} ~=~ \frac{b(1 - m)NP}{1 + \gamma(1 - m)N} - cP$$
$$\frac{{d}K}{{d}t} ~=~ \frac{(K - \alpha)(p - K)}{q + K}$$
My attempt is this:
We show that the system is bounded by showing each equation is bounded.
For, ##\frac{{d}K}{{d}t} = \frac{(K - \alpha)(p - K)}{q + K}##, the
denominator ##q+K>0## ensures it is well-defined. Now if ##\alpha<p## then ##K##
is bounded between ##\alpha## and ##p## and if ##\alpha>p##, then ##K## is bounded between
##p## and ##\alpha##. Therefore, ##\min(\alpha,p)\le K \le \max(\alpha,p)##.
Now for, ##\frac{{d}N}{{d}t} = rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} \implies \frac{{d}N}{{d}t} \le rN\left(1 - \frac{N}{K}\right)##. Now since ##K## is bounded, we choose the upper and lower bounds to be ##K_{max}## and ##K_{min}## respectively. Then
##K\le K_{max} \implies - \frac{N}{K} \le \frac{N}{K_{max}}##. Therefore, for any
##\epsilon >0##, we choose ##N_{upper} = K_{max} + \epsilon##. So we have,
##\frac{{d}N}{{d}t} \le rN\left(1 - \frac{N}{K_{max}}\right) < -rN\frac{\epsilon}{K_{max}} < 0##. This implies it is always bounded above.
Now for, ##\frac{{d}P}{{d}t} ~=~ \frac{b(1 - m)NP}{1 + \gamma(1 - m)N} - cP##,
we consider the Lyapunov function ##V(t)## defined as:
$$V(t) = N(t) + \frac{a}{b}P(t)$$
Since ##N(t) \ge 0## and ##P(t) \ge 0##, it follows that ##V(t) \ge 0##.
Let's compute the derivative of $$V(t)$$ with respect to time:
$$ \frac{dV}{dt} = \frac{dN}{dt} + \frac{a}{b}\frac{dP}{dt} $$
Substitute the expressions for $$\frac{dN}{dt}$$ and $$\frac{dP}{dt}$$ from equations (1) and (2):
$$\begin{align*}
\frac{dV}{dt} &= \left[ rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} \right] + \frac{a}{b}\left[ \frac{b(1 - m)NP}{1 + \gamma(1 - m)N} - cP \right] \\
\frac{dV}{dt} &= rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} + \frac{ab(1 - m)NP}{b(1 + \gamma(1 - m)N)} - \frac{ac}{b}P \\
\frac{dV}{dt} &= rN\left(1 - \frac{N}{K}\right) - \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} + \frac{a(1 - m)NP}{1 + \gamma(1 - m)N} - \frac{ac}{b}P
\end{align*}$$
The terms cancel out:
$$ \frac{dV}{dt} = rN\left(1 - \frac{N}{K}\right) - \frac{ac}{b}P $$
We know that ##K(t) \ge K_{min}## and ##N(t) \ge 0##. The function ##f(N) = rN\left(1 - \frac{N}{K}\right)## is a parabola opening downwards with roots at ##N=0## and ##N=K##. Its maximum value is achieved at ##N = K/2##, with the value ##r(K/2)(1 - 1/2) = rK/4##.
Since ##K(t) \le K_{max}##, the maximum value of ##rN\left(1 - \frac{N}{K}\right)## for all possible ##K(t)## is bounded by ##rK_{max}/4##.
Therefore, we can write:
$$ \frac{dV}{dt} \le \frac{rK_{max}}{4} - \frac{ac}{b}P $$
Let $$M_V = \frac{rK_{max}}{4}$$, which is a positive constant. Then:
$$ \frac{dV}{dt} \le M_V - \frac{ac}{b}P $$
Now, consider the case where ##P(t)## becomes sufficiently large. If ##P(t) > \frac{M_V b}{ac}##, then:
$$ M_V - \frac{ac}{b}P < M_V - \frac{ac}{b}\left(\frac{M_V b}{ac}\right) = M_V - M_V = 0 $$
So, if ##P(t) > \frac{M_V b}{ac}##, then ##\frac{dV}{dt} < 0##. This implies that if ##P(t)## exceeds this threshold, the value of ##V(t)## will start to decrease. Since ##V(t) = N(t) + \frac{a}{b}P(t)## and ##N(t) \ge 0##, a decrease in ##V(t)## when ##P(t)## is large means that ##P(t)## must also decrease. Thus, ##P(t)## cannot grow indefinitely.
Therefore, ##P(t)## is ultimately bounded above. Since ##P(t) \ge 0##, it is also bounded below. So, there exists a constant ##P_{upper} > 0## such that ##0 \le P(t) \le P_{upper}## for all sufficiently large ##t##.
Last edited by a moderator: