# A Partial Differential Equation Mathematical Modelling

#### Hector Triana

Salutations,
I have been trying to approach a modelling case about organism propagation which reproducing with velocity $$\alpha$$ spreading randomly according these equations:
$$\frac{du(x,t)}{dt}=k\frac{d^2u}{dx^2} +\alpha u(x,t)\\\ \\ u(x,0)=\delta(x)\\\ \lim\limits_{x \to \pm\infty} u(x,t)=0$$

This studying case requires to demonstrate that isoprobability contours, it means, in the points (x,t) which P(x,t)=P=constant is verified that
$$\frac{x}{t}=\pm [4\alpha k-2k\frac{\log(t)}{t}-\frac{4k}{t}\log(\sqrt{4\pi k} P)]^\frac{1}{2}$$

Another aspect to demonstrate is that $t \to \infty$, the spreading velocity of these contours, it means, the velocity which these organisms are spreading is aproximated to
$$\frac{x}{t}\pm(4\alpha k)^\frac{1}{2}$$

Finally, how to compare this spreading velocity with purely diffusive process $(\alpha=0)$, it means , x is aproximated to $$\sqrt{kt}$$

This is just for academical curiosity and I would like to understand better this kind of cases with Partial Differential Equations. So, I require any guidance or starting steps or explanations to find the solutions because it's an interesting problem.

Thanks very much for your attention.

Related Differential Equations News on Phys.org

#### PF_Help_Bot

Thanks for the thread! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post? The more details the better.

#### pasmith

Homework Helper
Substituting $u(x,t) = e^{\alpha t}v(x,t)$ reduces the problem to the heat equation, as $$\frac{\partial u}{\partial t} = e^{\alpha t}\frac{\partial v}{\partial t} + \alpha u$$ and $$\frac{\partial^2 u}{\partial x^2} = e^{\alpha t} \frac{\partial^2 v}{\partial x^2}$$

"Partial Differential Equation Mathematical Modelling"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving