Salutations,(adsbygoogle = window.adsbygoogle || []).push({});

I have been trying to approach a modelling case about organism propagation which reproducing with velocity $$\alpha$$ spreading randomly according these equations:

$$\frac{du(x,t)}{dt}=k\frac{d^2u}{dx^2} +\alpha u(x,t)\\\ \\ u(x,0)=\delta(x)\\\ \lim\limits_{x \to \pm\infty} u(x,t)=0$$

This studying case requires to demonstrate that isoprobability contours, it means, in the points (x,t) which P(x,t)=P=constant is verified that

$$\frac{x}{t}=\pm [4\alpha k-2k\frac{\log(t)}{t}-\frac{4k}{t}\log(\sqrt{4\pi k} P)]^\frac{1}{2}$$

Another aspect to demonstrate is that $t \to \infty$, the spreading velocity of these contours, it means, the velocity which these organisms are spreading is aproximated to

$$\frac{x}{t}\pm(4\alpha k)^\frac{1}{2}$$

Finally, how to compare this spreading velocity with purely diffusive process $(\alpha=0)$, it means , x is aproximated to $$\sqrt{kt}$$

This is just for academical curiosity and I would like to understand better this kind of cases with Partial Differential Equations. So, I require any guidance or starting steps or explanations to find the solutions because it's an interesting problem.

Thanks very much for your attention.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Partial Differential Equation Mathematical Modelling

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**