MHB Show that 1^m+2^m+....+(n-2)^m+(n-1)^m is divisible by n

  • Thread starter Thread starter mathmari
  • Start date Start date
AI Thread Summary
The discussion revolves around proving that the sum \(1^m + 2^m + ... + (n-1)^m\) is divisible by \(n\) for positive integers \(m\) and \(n\). Participants initially explore the equivalence of the sum under modulo \(n\) and attempt to demonstrate divisibility through manipulation of the terms. It is revealed that additional conditions, specifically that both \(m\) and \(n\) should be odd, are necessary for the proof to hold true. The conversation also touches on binomial expansion and properties of modular arithmetic, ultimately leading to the conclusion that the sum is indeed divisible by \(n\) under the specified conditions. The final consensus emphasizes the importance of these conditions in validating the original statement.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Show that if $m,n$ are positive integers, then $1^m+2^m+...+(n-2)^m+(n-1)^m$ is divisible by $n$.
(Hint: Let $s=1^m+2^m+...+(n-2)^m+(n-1)^m$. Obviously $s=(n-1)^m+(n-2)^m+...+2^m+1^m$.
Consider these relations as equivalent modn and add them.)

$$1^m+2^m+...+(n-2)^m+(n-1)^m=((n-1)^m+(n-2)^m+...+2^m+1^m)modn$$
$$(n-1)^m+(n-2)^m+...+2^m+1^m=(1^m+2^m+...+(n-2)^m+(n-1)^m)modn$$
By adding them we get:
$$(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)=((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))modn$$
That means that:
$$n|[(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)]-[((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))]$$
Or not??
And that is equal to $$n|0$$
Is this correct?
 
Mathematics news on Phys.org
Something seems to be wrong here. I tested this result by trying small values of $m$ and $n$:

$(m=1,n=4)\quad 1^1 + 2^1 + 3^1 = 6$, which is not a multiple of $4$;

$(m=2, n=3)\quad 1^2 + 2^2 = 5$, which is not a multiple of $3$;

$(m=4, n=5)\quad 1^4 + 2^4 + 3^4 + 4^4 = 354$, which is not a multiple of $5$.​

Is there some additional condition missing from the statement of the problem?
 
Opalg said:
Something seems to be wrong here. I tested this result by trying small values of $m$ and $n$:

$(m=1,n=4)\quad 1^1 + 2^1 + 3^1 = 6$, which is not a multiple of $4$;

$(m=2, n=3)\quad 1^2 + 2^2 = 5$, which is not a multiple of $3$;

$(m=4, n=5)\quad 1^4 + 2^4 + 3^4 + 4^4 = 354$, which is not a multiple of $5$.​

Is there some additional condition missing from the statement of the problem?

I read the exercise again and realized that there is also the condition that $m$ is odd..
 
Hi! :)

mathmari said:
I read the exercise again and realized that there is also the condition that $m$ is odd..

I think you also need the additional condition that $n$ is odd as well.
See Opalg's first example to see why it won't work otherwise.

Can you make a binomial expansion of $(n-k)^m$?
And find the remainder $\mod n$?
 
mathmari said:
Show that if $m,n$ are positive integers, then $1^m+2^m+...+(n-2)^m+(n-1)^m$ is divisible by $n$.
(Hint: Let $s=1^m+2^m+...+(n-2)^m+(n-1)^m$. Obviously $s=(n-1)^m+(n-2)^m+...+2^m+1^m$.
Consider these relations as equivalent modn and add them.)

$$1^m+2^m+...+(n-2)^m+(n-1)^m=((n-1)^m+(n-2)^m+...+2^m+1^m)modn$$
$$(n-1)^m+(n-2)^m+...+2^m+1^m=(1^m+2^m+...+(n-2)^m+(n-1)^m)modn$$
By adding them we get:
$$(1^m+(n-1)^m)+(2^m+(n-2)^m)+...+((n-2)^m+2^m)+((n-1)^m+1^m)=((n-1)^m+1^m)+((n-2)^m+2^m)+...+(2^m+(n-2)^m)+(1^m+(n-1)^m))modn$$
On the assumption that $m$ and $n$ are both odd, I would modify your approach just a bit, to write it as $$s=(n-1)^m+(n-2)^m+...+2^m+1^m,$$
$$s=1^m+2^m+...+(n-2)^m+(n-1)^m.$$
By adding them we get:
$$2s = \bigl((n-1)^m + 1^m\bigr)+\bigl((n-2)^m+ 2^m\bigr)+ \ldots +\bigl(2^m + (n-2)^m\bigr)+\bigl(1^m + (n-1)^m\bigr).$$ Can you continue from there?
 
I like Serena said:
Can you make a binomial expansion of $(n-k)^m$?
And find the remainder $\mod n$?

Do you mean that $(n-k)^m= \sum_{i=0}^{m} \binom{m}{i}{n^{m-i}(-k)^{m}}$ ?

Is it true that: $(n-k)^m=-k(\mod n)$ ?

Opalg said:
On the assumption that $m$ and $n$ are both odd, I would modify your approach just a bit, to write it as $$s=(n-1)^m+(n-2)^m+...+2^m+1^m,$$
$$s=1^m+2^m+...+(n-2)^m+(n-1)^m.$$
By adding them we get:
$$2s = \bigl((n-1)^m + 1^m\bigr)+\bigl((n-2)^m+ 2^m\bigr)+ \ldots +\bigl(2^m + (n-2)^m\bigr)+\bigl(1^m + (n-1)^m\bigr).$$ Can you continue from there?

$[2s]=[\bigl((n-1)^m + 1^m\bigr)+\bigl((n-2)^m+ 2^m\bigr)+ \ldots +\bigl(2^m + (n-2)^m\bigr)+\bigl(1^m + (n-1)^m\bigr)]=[\bigl((n-1)^m + 1^m\bigr)]+[\bigl((n-2)^m+ 2^m\bigr)]+\ldots +[\bigl(2^m + (n-2)^m\bigr)]+[\bigl(1^m + (n-1)^m\bigr)]=([n-1]^m+[1]^m)+([n-2]^m+[2]^m)+\ldots +([2]^m+[n-2]^m)+([1]^m+[n-1]^m)=([-1]^m+[1]^m)+([-2]^m+[2]^m)+ \ldots +([2]^m+[-2]^m)+([1]^m+[-1]^m)=(-[1]^m+[1]^m)+(-[2]^m+[2]^m)+ \ldots +([2]^m-[2]^m)+([1]^m-[1]^m)=0+0+ \ldots +0+0=0$

So the remainder of the division of $2s$ and $n$ is $0$, so the remainder of the division of $s$ and $n$ is also $0$.

Is this correct?
 
mathmari said:
Do you mean that $(n-k)^m= \sum_{i=0}^{m} \binom{m}{i}{n^{m-i}(-k)^{m}}$ ?

Yep.

Is it true that: $(n-k)^m=-k(\mod n)$ ?

Almost.
That should be
$$(n-k)^m \equiv -k^m \pmod n$$
when $m$ is odd.
 
Back
Top