Show that complex conjugate is also a root of polynomial with real coefficients

Click For Summary
For a polynomial f(x) with real coefficients, if c is a complex root, its complex conjugate must also be a root. This is demonstrated by taking the conjugate of the equation f(c) = 0, which leads to f(c conjugate) = 0 due to the properties of polynomial equations with real coefficients. The fundamental theorem of algebra supports this conclusion, as complex roots appear in conjugate pairs. The discussion highlights the realization that the coefficients being real is crucial for this property to hold. Understanding this concept is essential for solving polynomial equations in complex analysis.
Muffins
Messages
5
Reaction score
0

Homework Statement


Suppose that f(x) is a polynomial of degree n with real coefficients; that is,

f(x)=a_n x^n+ a_(n-1) x^(n-1)+ …+a_1 x+ a_0, a_n,… ,a_0∈ R(real)

Suppose that c ∈ C(complex) is a root of f(x). Prove that c conjugate is also a root of f(x)

Homework Equations



(a+bi)*(a-bi) = a^2 + b^2 where a, and b are always reals?
Not really sure if this helps or not.

The Attempt at a Solution



I'm really clueless on how to start approaching this. I was thinking perhaps the fundamental theorem of algebra might be of some use, or perhaps the fact that a number of complex form multiplied by it's conjugate is a real number, but I'm really not sure.

Could anyone give me a nudge in the right direction?
Any help would be greatly appreciated! Thanks!
 
Physics news on Phys.org
The root is where f(c)=0. Take the complex conjugate of that equation.
 
Never mind! I found the actual theorem on the web, and I think this is pretty much what I was looking for anyway

Consider the polynomial
f(x)=a_n x^n+ a_(n-1) x^(n-1)+ …+a_1 x+ a_0, a_n,… ,a_0∈ R(real)
where all a*x are real. The equation f(x) = 0 is thus
a_n x^n+ a_(n-1) x^(n-1)+ …+a_1 x+ a_0, a_n = 0
Given that all of the coefficients are real, we have
a_n x^n(conjugate) = a_n x^n(x is conjugate)
Thus it follows that
a_n x^n(conj)+ a_(n-1) x^(n-1)(conj)+ …+a_1 x(conj)+ a_0, a_n = 0(conj) = 0
and thus that for any root ζ its complex conjugate is also a root.
 
Hahah, thanks Dick! I caught on a little late, but thanks a bunch for your reply!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
2K