Show that given conditions, element is in center of group G

Click For Summary
In the discussion, the problem involves showing that an element b in a finite group G is in the center of G under specific conditions. It is established that if m is relatively prime to the order of G, then for all a in G, the equation a^m = ba^mb^{-1} holds. By manipulating this equation, it is shown that b commutes with all elements of G, leading to the conclusion that b is in the center Z(G). The argument is validated by noting that the coprimality of m and the order of G allows for the interchange of a and a^m. The final consensus confirms the correctness of the argument presented.
Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Let ##G## be a finite group and ##m## a positive integer which is relatively prime to ##|G|##. If ##b\in G## and ##a^mb=ba^m## for all ##a\in G##, show that ##b## is in the center of ##G##.

Homework Equations

The Attempt at a Solution


Let ##|G| = n## and ##b\in G##. Note that by Bézout 's identity ##nx + my = 1## for some ##x,y\in\mathbb{Z}##. Also, note that ##a^m = ba^mb^{-1}##. So

$$
\begin{align*}
a^m &= ba^mb^{-1}\\
(a^m)^y&= (ba^mb^{-1})^y\\
a^{my} &= ba^{my}b^{-1}\\
a^{1-nx} &= ba^{1-nx}b^{-1}\\
a(a^n)^{-x}&= ba(a^n)^{-x}b^{-1}\\
a(e)^{-x}&= ba(e)^{-x}b^{-1}\\
a&= bab^{-1}\\
\end{align*}
$$

Since ##a## is an arbitrary element of ##G##, we see that ##b\in Z(G)## ☐

Is this the correct argument?
 
Physics news on Phys.org
Mr Davis 97 said:

Homework Statement


Let ##G## be a finite group and ##m## a positive integer which is relatively prime to ##|G|##. If ##b\in G## and ##a^mb=ba^m## for all ##a\in G##, show that ##b## is in the center of ##G##.

Homework Equations

The Attempt at a Solution


Let ##|G| = n## and ##b\in G##. Note that by Bézout 's identity ##nx + my = 1## for some ##x,y\in\mathbb{Z}##. Also, note that ##a^m = ba^mb^{-1}##. So

$$
\begin{align*}
a^m &= ba^mb^{-1}\\
(a^m)^y&= (ba^mb^{-1})^y\\
a^{my} &= ba^{my}b^{-1}\\
a^{1-nx} &= ba^{1-nx}b^{-1}\\
a(a^n)^{-x}&= ba(a^n)^{-x}b^{-1}\\
a(e)^{-x}&= ba(e)^{-x}b^{-1}\\
a&= bab^{-1}\\
\end{align*}
$$

Since ##a## is an arbitrary element of ##G##, we see that ##b\in Z(G)## ☐

Is this the correct argument?
Yes. Because ##m## and ##n## are coprime, ##a## generates the same elements as ##a^m## so they can be interchanged.
 
  • Like
Likes Mr Davis 97
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
6
Views
2K