Show that you can distribute powers to commuting elements

  • Thread starter Mr Davis 97
  • Start date
  • Tags
    Elements
In summary, the conversation discusses proving the statement that if a and b are commuting elements of G, then (ab)^n = a^n b^n for all n in the integers. The conversation includes the attempt at a solution, which involves proving two lemmas and using induction to prove the result for both positive and negative integers. Other possible approaches are also mentioned, such as showing that commuting of a and b gives ab^-1 = b^-1a, which can be used to derive the desired results. The conversation also raises the question of whether or not the lemmas were necessary to prove the statement.
  • #1
Mr Davis 97
1,462
44

Homework Statement


If ##a## and ##b## are commuting elements of ##G##, prove that ##(ab)^n = a^nb^n## for all ##n \in \mathbb{Z}##.

Homework Equations

The Attempt at a Solution


We prove two lemmas:
1) If ##a## and ##b## commute, then so do their inverses: ##ab=ba \implies (ab)^{-1} = (ba)^{-1} \implies b^{-1}a^{-1} = a^{-1}b^{-1}##.

2) If ##a## and ##b## commute, then ##b^n a = ab^n##: Base case is trivial. Suppose for some ##k## we have ##b^ka = ab^k##. Then ##b^{k+1}a = bb^ka = bab^k = abb^k = ab^{k+1}##.

Now to the actual result.

Clearly ##(ab)^0 = a^0b^0##. So first we prove the result for the positive integers, by induction. The base case is trivial. Suppose for some ##k \in \mathbb{Z}^+## we have ##(ab)^k = a^kb^k##. Then ##(ab)^{k+1} = (ab)^k(ab) = a^kb^kab = a^kab^kb = a^{k+1}b^{k+1}##.

Now we prove the result for negative integers. ##(ab)^{-n} = (b^{-1}a^{-1})^n = (a^{-1}b^{-1})^n = (a^{-1})^n(b^{-1})^n = a^{-n}b^{-n}##.
Does this argument work? Were the lemmas really necessary or could I have assumed they held since their proofs are trivial?
 
Physics news on Phys.org
  • #2
Mr Davis 97 said:
since their proofs are trivial?
So is the whole statement you have to show. Better to show it explicitly.
 
  • #3
There is another argument, why you will not need to prove the negative ones explicitly: If you prove the statement for all ##n \in \mathbb{N}_0## and for all ##a,b \in G##, then you have also proven it for inverse elements. This is in words what you have written.

To do it by induction is a very formal way to prove it. In cases like the above, some dots will equally be acceptable, although from a logical point of view certainly not sufficient. But with the dots, every reader knows how the induction goes.
 
  • Like
Likes Mr Davis 97
  • #4
fresh_42 said:
There is another argument, why you will not need to prove the negative ones explicitly: If you prove the statement for all ##n \in \mathbb{N}_0## and for all ##a,b \in G##, then you have also proven it for inverse elements. This is in words what you have written.

To do it by induction is a very formal way to prove it. In cases like the above, some dots will equally be acceptable, although from a logical point of view certainly not sufficient. But with the dots, every reader knows how the induction goes.
But isn't it the case that I am not proving for all ##a,b \in G##, rather just in the case ##a,b## commute?
 
  • #5
Mr Davis 97 said:
But isn't it the case that I am not proving for all ##a,b \in G##, rather just in the case ##a,b## commute?
Yes, sure. But that doesn't change by taking the inverses: they commutate if and only if ##a## and ##b## do.
 
  • Like
Likes Mr Davis 97
  • #6
another approach, that is of course closely related, is to show that commuting of ##a## and ##b## gives you

##ab^{-1} = b^{-1}a## (and ditto for ##ba^{-1} = a^{-1}b##),
from here you can derive all the results you want by the ability to 'multiply by 1' (identity)
 
Back
Top