Show that gof is uniformly continuous

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Continuous
Click For Summary
SUMMARY

The discussion focuses on proving that the composition of two uniformly continuous functions, \( g \circ f \), is uniformly continuous. Given functions \( f: A \to B \) and \( g: B \to \mathbb{R} \), the participants establish that if \( f \) is uniformly continuous on \( A \) and \( g \) is uniformly continuous on \( B \), then \( g \circ f \) is uniformly continuous. The proof involves selecting appropriate \( \delta \) and \( \eta \) values to satisfy the uniform continuity definitions, ensuring that the output of \( g \) remains close for inputs from \( f \).

PREREQUISITES
  • Understanding of uniform continuity in mathematical analysis
  • Familiarity with function composition
  • Knowledge of epsilon-delta definitions in calculus
  • Basic concepts of real analysis
NEXT STEPS
  • Study the formal definition of uniform continuity
  • Explore examples of uniformly continuous functions
  • Learn about the implications of uniform continuity in real analysis
  • Investigate the properties of continuous functions and their compositions
USEFUL FOR

Mathematics students, educators, and researchers interested in real analysis, particularly those studying properties of continuous functions and their compositions.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! :)
I am given the following exercise:
$f:A \to B,g:B \to R$
If $f$ is uniformly continuous at $A$ and $g$ is uniformly continuous at $B$,show that gof is uniformly continuous.
That's what I have tried so far:
Let $\epsilon'>0$.Since $f$ is uniformly continuous at $A$ there is a $\delta=\delta(\epsilon')>0$ such that $\forall x,y \in A$ with $|x-y|<\delta \Rightarrow |f(x)-f(y)|< \epsilon'$.

Let $\epsilon>0$.Since $g$ is uniformly continuous at $B$,there is a $w=w(\epsilon)>0$ such that $\forall u,v \in B$ with $|u-v|<w \Rightarrow |g(u)-g(v)|< \epsilon$.

Am I right so far?How can I continue?
 
Last edited:
Physics news on Phys.org
evinda said:
Hi! :)
I am given the following exercise:
$f:A \to B,g:B \to R$
If $f$ is uniformly continuous at $A$ and $g$ is uniformly continuous at $B$,show that gof is uniformly continuous.
That's what I have tried so far:
Let $\epsilon'>0$.Since $f$ is uniformly continuous at $A$ there is a $\delta=\delta(\epsilon')>0$ such that $\forall x,y \in A$ with $|x-y|<\delta \Rightarrow |f(x)-f(y)|< \epsilon'$.

Let $\epsilon>0$.Since $g$ is uniformly continuous at $B$,there is a $w=w(\epsilon)>0$ such that $\forall u,v \in B$ with $|u-v|<\epsilon \Rightarrow |g(u)-g(v)|< \epsilon$.

Am I right so far?How can I continue?

First you mean to say $f$ is uniformly continuous on $A$, $g$ is uniformly continuous on $B$.

Let $h=g\circ f: A\to \mathbb{R}$. We want to show this is uniformly continuous. What does the definition say? For any $\varepsilon > 0$ we can find $\delta > 0$ so that if $|x-y|<\delta \text{ and }x,y \in A$ then $|h(x)-h(y)| < \varepsilon $.

Now $|h(x)-h(y)| = |f(g(x)) - f(g(y))|$. Now the idea is that since $f$ is uniformly continuous if $g(x),g(y)$ are sufficiently close to each other then $|f(g(x)) - f(g(y))|$ can be made arbitrary small. So the question is how do you mean $g(x),g(y)$ close to each other? This is where you start to use uniform continuity of $g$.
 
ThePerfectHacker said:
First you mean to say $f$ is uniformly continuous on $A$, $g$ is uniformly continuous on $B$.

Let $h=g\circ f: A\to \mathbb{R}$. We want to show this is uniformly continuous. What does the definition say? For any $\varepsilon > 0$ we can find $\delta > 0$ so that if $|x-y|<\delta \text{ and }x,y \in A$ then $|h(x)-h(y)| < \varepsilon $.

Now $|h(x)-h(y)| = |f(g(x)) - f(g(y))|$. Now the idea is that since $f$ is uniformly continuous if $g(x),g(y)$ are sufficiently close to each other then $|f(g(x)) - f(g(y))|$ can be made arbitrary small. So the question is how do you mean $g(x),g(y)$ close to each other? This is where you start to use uniform continuity of $g$.

So,can I say it like that?

Let $\epsilon'>0$.Since $f$ is uniformly continuous at $A$ there is a $\delta=\delta(\epsilon')>0$ such that $\forall x,y \in A$ with $|x-y|<\delta \Rightarrow |f(x)-f(y)|< \epsilon'$.

Let $\epsilon>0$.Since $g$ is uniformly continuous at $B$,there is a $w=w(\epsilon)>0$ such that $\forall u,v \in B$ with $|u-v|<w \Rightarrow |g(u)-g(v)|< \epsilon$.

We want to show that $|h(x)-h(y)|=|g(f(x))-g(f(y))|< \epsilon$,and this is true,if $u=f(x),v=f(y),w=\epsilon'$?? Or do I have to say something else to show that gof is uniformly continuous? :confused:
 
evinda said:
So,can I say it like that?

Let $\epsilon'>0$.Since $f$ is uniformly continuous at $A$ there is a $\delta=\delta(\epsilon')>0$ such that $\forall x,y \in A$ with $|x-y|<\delta \Rightarrow |f(x)-f(y)|< \epsilon'$.

Let $\epsilon>0$.Since $g$ is uniformly continuous at $B$,there is a $w=w(\epsilon)>0$ such that $\forall u,v \in B$ with $|u-v|<w \Rightarrow |g(u)-g(v)|< \epsilon$.

We want to show that $|h(x)-h(y)|=|g(f(x))-g(f(y))|< \epsilon$,and this is true,if $u=f(x),v=f(y),w=\epsilon'$?? Or do I have to say something else to show that gof is uniformly continuous? :confused:

You basically got it. Here is a more polished version of what you are trying to say.

Given $\varepsilon > 0$ choose $\delta > 0$ so that $|g(a) - g(b)| < \varepsilon $ provided that $|a-b| < \delta$. Now choose $\eta > 0$ so that $|f(x) - f(y)| < \delta$ provided that $|x-y| < \eta$. If $|x-y|<\eta$ then $|f(x)-f(y)| < \delta$ and then $|g(f(x)) - g(f(y)) | < \varepsilon$.
 
ThePerfectHacker said:
You basically got it. Here is a more polished version of what you are trying to say.

Given $\varepsilon > 0$ choose $\delta > 0$ so that $|g(a) - g(b)| < \varepsilon $ provided that $|a-b| < \delta$. Now choose $\eta > 0$ so that $|f(x) - f(y)| < \delta$ provided that $|x-y| < \eta$. If $|x-y|<\eta$ then $|f(x)-f(y)| < \delta$ and then $|g(f(x)) - g(f(y)) | < \varepsilon$.

I understand... :) Thank you very much!
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K