Show that if d is a metric, then d'=sqrt(d) is a metric

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Metric
Click For Summary

Homework Help Overview

The discussion revolves around proving that if d is a metric, then d' defined as the square root of d is also a metric. Participants are examining the properties of metrics and how they apply to the transformation of d into d'.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the axioms of metrics, including identity of indiscernibles, symmetry, and the triangle inequality. There are suggestions to clarify the properties of the square root function used in the proofs and to provide more explicit connections between the metrics d and d'.

Discussion Status

The discussion is active with various participants providing insights and suggestions for improvement. Some participants are questioning the completeness of the proofs and are advocating for clearer explanations, particularly regarding the properties of the square root function. There is no explicit consensus, but multiple interpretations and approaches are being explored.

Contextual Notes

Participants note the importance of detailing the properties of the square root function in the context of the triangle inequality and the open set definitions. There is a recognition that the proofs could benefit from more explicit formulations and connections between the metrics.

docnet
Messages
796
Reaction score
486
Homework Statement
.
Relevant Equations
.
Screen Shot 2022-03-12 at 2.44.10 AM.png


##d'## is a metric on ##X## because it satisfies the axioms of metrics:

Identity of indiscernibles:
##x=y\Longleftrightarrow d(x,y)=0\Longleftrightarrow \sqrt{d(x,y)}=\sqrt{0}##

Symmetry: ##d(x,y)=d(y,x)\Longrightarrow \sqrt{d(x,y)}=\sqrt{d(y,x)}##

Triangle inequality: ##d(x,z)\leq d(x,y)+d(y,z)\Longrightarrow \sqrt{d(x,z)}\leq \sqrt{d(x,y)+d(y,z)}\leq \sqrt{d(x,y)}+\sqrt{d(y,z)}##

Open sets for ##d'##are the same as the open sets for ##d##.

Given ##x## in ##U##, let ##\epsilon>0## such that any ##y## that satisfies ##d(x,y)< \epsilon## is in the open set ##U## for ##d##. Define ##\delta=\sqrt{\epsilon}##. Then,
##d(x,y)<\epsilon\Longrightarrow \sqrt{d(x,y)}<\delta##.
So any ##y## in the open set ##U## for ##d## is in the open set ##U## for ##d'##.

Given ##x## in ##U##, let ##\delta>0## such that any ##y## that satisfies ##\sqrt{d(x,y)}< \delta## is in the open set ##U## for ##'d##. Again, define ##\delta^2=\epsilon##. Then,
##\sqrt{d(x,y)}<\delta \Longrightarrow d(x,y)<\epsilon ##.
So any ##y## in the open set ##U## for ##d'## is in the open set ##U## for ##d##.
 
Physics news on Phys.org
Looks ok, except for some typos in the last part.
 
  • Like
Likes   Reactions: docnet
All true, but you should probably mention what properties of the square root function you are using in the last two inequalities of the triangle property proof. There are places where you are applying a property of the square root function that you should mention (and maybe prove).
 
Last edited:
  • Like
Likes   Reactions: vela and fresh_42
I think the last part is best done by noting that for every x_0 \in X and every r \geq 0 we have <br /> \{ x \in X : d(x,x_0) &lt; r \} = \{ x \in X: d&#039;(x,x_0) = \sqrt{d(x,x_0)} &lt; \sqrt{r}\}. So if a set contains a d-open ball of each of its points then it contains a d&#039;-open ball of each of its points and vice-versa.
 
I would prefer something more explicit. Showing that ##d'## is a metric by almost never writing ##d'## seems not quite right to me. I feel I'm having to fill in too many blanks.

Also, for the open sets question, I'd like to see something more formulaic:

Let ##U## be open under ##d##, then ... ##U## is open under ##d'##.

Let ##U be open under ##d'##, then ... ##U## is open under ##d'##.
 
FactChecker said:
All true, but you should probably mention what properties of the square root function you are using in the last two inequalities of the triangle property proof. There are places where you are applying a property of the square root function that you should mention (and maybe prove).
Not sure what name this is called, but it seemed clear from

##\sqrt{d(x,y)+d(y,z)}\leq\sqrt{d(x,y)+d(y,z)+2\sqrt{d(x,y)d(y,z)}}=\sqrt{d(x,y)}+\sqrt{d(y,z)}##

pasmith said:
I think the last part is best done by noting that for every x_0 \in X and every r \geq 0 we have <br /> \{ x \in X : d(x,x_0) &lt; r \} = \{ x \in X: d&#039;(x,x_0) = \sqrt{d(x,x_0)} &lt; \sqrt{r}\}. So if a set contains a d-open ball of each of its points then it contains a d&#039;-open ball of each of its points and vice-versa.

I agree with you. My main difficulty was explaining how ##d(x,y)<r## is the same as ##d'(x,y)<\sqrt{r}##

PeroK said:
I would prefer something more explicit. Showing that ##d'## is a metric by almost never writing ##d'## seems not quite right to me. I feel I'm having to fill in too many blanks.

Also, for the open sets question, I'd like to see something more formulaic:

Let ##U## be open under ##d##, then ... ##U## is open under ##d'##.

Let ##U## be open under ##d'##, then ... ##U## is open under ##d'##.
##d'## is a metric on ##X## because it satisfies the axioms of metrics:

Identity of indiscernibles:
##x=y\Longleftrightarrow d(x,y)=0\Longleftrightarrow \sqrt{d(x,y)}=\sqrt{0}\Longleftrightarrow d'(x,y)=0##

Symmetry: ##d(x,y)=d(y,x)\Longrightarrow \sqrt{d(x,y)}=\sqrt{d(y,x)}\Longleftrightarrow d'(x,y)=d'(y,x)##

Triangle inequality: ##d(x,z)\leq d(x,y)+d(y,z)\Longrightarrow \sqrt{d(x,z)}\leq \sqrt{d(x,y)+d(y,z)}\leq \sqrt{d(x,y)}+\sqrt{d(y,z)}\Longleftrightarrow d'(x,z)\leq d'(x,y)+d'(y,z)## (because the square root of the sum is less than equal to the sum of the square roots)Let ##U## be open under ##d##, then for all ##x## in ##U##, there is an ##\epsilon>0## such that any ##y## that satisfies ##d(x,y)< \epsilon## is in the open set ##U## for ##d##. Define ##\delta## as ##\sqrt{\epsilon}##, then any ##y## that satisfies ##d(x,y)<\epsilon## also satisfies ##d'(x,y)< \delta##, and is in the open set ##U## for ##d##.

Let ##U## be open under ##d'##, then for all ##x## in ##U##, there is a ##\delta>0## such that any ##y## that satisfies ##d(x,y)< \delta## is in the open set ##U## for ##d'##. Define ##\epsilon## as ##\delta^2##, then any ##y## satisfies ##d'(x,y)< \delta## also satisfies ##d(x,y)<\epsilon##, and is in the open set ##U## for ##d##.
 
docnet said:
Let ##U## be open under ##d##, then for all ##x## in ##U##, there is an ##\epsilon>0## such that any ##y## that satisfies ##d(x,y)< \epsilon## is in the open set ##U## for ##d##. Define ##\delta## as ##\sqrt{\epsilon}##, then any ##y## that satisfies ##d(x,y)<\epsilon## also satisfies ##d'(x,y)< \delta##, and is in the open set ##U## for ##d##.
It's more about technique that correctness, but here's how I would do this:

Let ##U## be open under ##d## and ##x \in U##. There exists ##\epsilon>0## such that ##d(x, y) < \epsilon \ \Rightarrow \ y \in U##.

Now ##d'(x, y) < \sqrt{\epsilon} \Rightarrow \ d(x, y) < \epsilon \ \Rightarrow \ y \in U##. And, as ##x## was arbitrary, we see that ##U## is open under ##d'##.
 
  • Like
Likes   Reactions: docnet
#1 It's good practice to briefly mention what you are going to do before you start chasing the epsilons around. We take a subset of ##X## and show it is open with respect to ##d## if and only if it is open with respect to ##\sqrt{d}##. Mentioning such things explicitly makes things easier for yourself and also helps convince your grader more.
 
  • Like
Likes   Reactions: docnet
Here are some steps where I think you could/should have mentioned some properties of the square root function and included some more detail.
docnet said:
Not sure what name this is called, but it seemed clear from

##\sqrt{d(x,y)+d(y,z)}\leq\sqrt{d(x,y)+d(y,z)+2\sqrt{d(x,y)d(y,z)}}=\sqrt{d(x,y)}+\sqrt{d(y,z)}##
##\sqrt{d(x,y)+d(y,z)}\leq\sqrt{d(x,y)+d(y,z)+2\sqrt{d(x,y)d(y,z)}}## because the square root function is increasing and ##d(x,y)+d(y,z) \leq d(x,y)+d(y,z)+2\sqrt{d(x,y)d(y,z)}##.

##\sqrt{d(x,y)+d(y,z)+2\sqrt{d(x,y)d(y,z)}}= \sqrt{(\sqrt{d(x,y)}+\sqrt{d(y,z)})^2} = \sqrt{d(x,y)}+\sqrt{d(y,z)}##

Another step could use some more explanation:
docnet said:
##d(x,y)=0\Longleftrightarrow \sqrt{d(x,y)}=\sqrt{0}##
Because the square root function is one-to-one.
 
Last edited:
  • Like
Likes   Reactions: docnet

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
2
Views
1K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K