Understanding of the Metric Space axioms - (axiom 2 only)

  • #1

chwala

Gold Member
2,370
303
Homework Statement
See below
Relevant Equations
Metric spaces
Am refreshing on Metric spaces been a while...

Consider the axioms below;
1. ##d(x,y)≥0## ∀ ##x, y ∈ X## - distance between two points
2. ## d(x,y) =0## iff ##x=y##, ∀ ##x,y ∈ X##
3.##d(x,y)=d(y,x)## ∀##x, y ∈ X## - symmetry
3. ##d(x,y)≤d(x,z)+d(z,y)## ∀##x, y,z ∈ X## - triangle inequality

The proofs are clear to me, i just read on that. I wanted to check how to show that axiom ##2## holds...
My take is given set ##R## with usual metric si defined by,
##d_1(x,y)##=##|x-y|##, ∀ ##x, y ∈ X##, then ##d_1(x,y)##= ##\sqrt {(x-x)^2+(x-x)^2}## since ##x=y##
 
Last edited:
  • #2
Axioms cannot be proven by definition.

What you can do is to prove that some construction satisfies some set of axioms.
 
  • #3
The proofs are clear to me, i just read on that. IU wanted to ask if we could prove axiom ##2## with
given set ##R## with usual metric,
##d_1(x,y)##=Modulus ##x-y## ##x, y ∈ X##, then ##d_1(x,y)##= ##\sqrt {(x-x)^2+(x-x)^2}## since ##x=y##
I'm not sure what you are doing there. Axiom 2 for ##\mathbb R## says:
$$|x - y| = 0 \ \text{iff} \ \ x = y$$That can be proved from the definition of the modulus.

Hint: without loss of generality assume ##x \ge y##.
 
  • Like
Likes Hall and chwala
  • #4
Trying to simply show or state that if ##x=y##, then the distance between the two points in a ##2D## plane is equal to 0. You're saying that is wrong?
 
  • #5
Axioms cannot be proven by definition.

What you can do is to prove that some construction satisfies some set of axioms.
That's what I meant...learning point...I may need to amend thread title...
 
  • #6
Trying to simply show or state that if ##x=y##, then the distance between the two points in a 2D plane is equal to 0. You're saying that is wrong?
You're confusing ##d(x, y)##, where ##x, y \in \mathbb R## and ##d(r_1, r_2)## where ##r_1 = (x_1, y_1)## etc. are points in the plane.
 
  • #7
You're confusing ##d(x, y)##, where ##x, y \in \mathbb R## and ##d(r_1, r_2)## where ##r_1 = (x_1, y_1)## etc. are points in the plane.
I've seen that...let me look at it again...you are right. Thanks Perok.
 
  • #8
Note that:$$d(x,y) = | x - y|$$ and$$d(r_1, r_2) = ||r_1 - r_2|| = \sqrt{(x_1 - x_2)^2 + (y_1-y_2)^2}$$
 
  • #9
But if indeed ##x=y##, then it follows that ##x## and ##y## are one and same point...we then have ##(x_1, y_1)= (x_2,y_2)## whose Modulus is equal to 0...clarify on this. Thanks.
 
  • #10
But if indeed ##x=y##, then it follows that ##x## and ##y## are one and same point...we then have ##(x_1, y_1)= (x_2,y_2)## whose Modulus is equal to 0...clarify on this. Thanks.
Yes, but it's "if and only if". You need to show that if ##|x - y| = 0##, then ##x = y##.
 
  • #11
Yes, but it's "if and only if". You need to show that if ##|x - y| = 0##, then ##x = y##.
That is exactly what i wanted to state from post ##1##,
##d_1(x,y)##=##|x-y|## ∀##x, y ∈ X##,
then if ##x=y##, and given that ##x=(m_1,n_1)##, then ##y=m_1,n_1##. It follows that
##d_1(x,y)##= ##\sqrt {(m_1-m_1)^2+(n_1-n_1)^2}##=##\sqrt {(0)^2+(0)^2}=0##
 
  • #12
That is exactly what i wanted to state from post ##1##,
##d_1(x,y)##=##|x-y|## ∀##x, y ∈ X##,
then if ##x=y##, and given that ##x=(m_1,n_1)##, then ##y=m_1,n_1##. It follows that
##d_1(x,y)##= ##\sqrt {(m_1-m_1)^2+(n_1-n_1)^2}##=##\sqrt {(0)^2+(0)^2}=0##
You still haven't shown the converse.
 
  • #13
You still haven't shown the converse.
You mean for ##y=x##, then we shall have,
##d_1(y,x)##= ##\sqrt {(n_1-n_1)^2+(m_1-m_1)^2}##=##\sqrt {(0)^2+(0)^2}=0##

implying property on Commutativity holds...
 
Last edited:
  • #14
You mean for ##y=x##, then we shall have,
##d_1(y,x)##= ##\sqrt {(n_1-n_1)^2+(m_1-m_1)^2}##=##\sqrt {(0)^2+(0)^2}=0##

implying property on Commutativity holds...
No, I mean that you must show that ##d(x, y) = 0 \ \Rightarrow \ x = y##.

Take ##d(x, y) = \sin^2(x - y)##. Clearly, ##d(x,x) = 0##, but ##d## is not a metric, as ##\sin^2(x-y) = 0 \not \Rightarrow \ x = y##.
 
  • #15
No, I mean that you must show that ##d(x, y) = 0 \ \Rightarrow \ x = y##.

Take ##d(x, y) = \sin^2(x - y)##. Clearly, ##d(x,x) = 0##, but ##d## is not a metric, as ##\sin^2(x-y) = 0 \not \Rightarrow \ x = y##.
If i am getting you right by converse we are trying to establish the fact that the axiom only holds for ##(x,y)## if and only if ##d## is a Metric (the distance function) ... otherwise it won't hold...
 
Last edited:
  • #16
If i am getting you right by converse we are trying to establish the fact that the axiom only holds for ##(x,y)## if and only if ##d## is a Metric ...otherwise it won't hold...
It might be best if you accept that ##|x-y|## is a metric and not try to prove it.
 
  • #17
It might be best if you accept that ##|x-y|## is a metric and not try to prove it.
OK...let me refresh on this...Pure Maths is not for the faint hearted:smile:...its
many years since i looked at this...Ring theory, Real Analysis etc ...time to look at them.
Cheers Perok!
 
  • #18
@PeroK Can you please give us a little big picture of relation between General Relativity and Metric Spaces?
 
  • #19
@PeroK Can you please give us a little big picture of relation between General Relativity and Metric Spaces?
Different sort of metric!
 
  • #20
@PeroK Can you please give us a little big picture of relation between General Relativity and Metric Spaces?
Two different world's...you are talking of tensors man...
 

Suggested for: Understanding of the Metric Space axioms - (axiom 2 only)

Replies
2
Views
588
Replies
11
Views
511
Replies
2
Views
494
Replies
18
Views
785
Replies
3
Views
716
Replies
15
Views
1K
Back
Top