Show that it's a solution and solve the primarities...

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving that \( a^{p-2}b \) is a solution to the equation \( ax \equiv b \pmod{p} \) for a prime \( p \) where \( p \nmid a \), leveraging Fermat's Little Theorem. The participants also explore Euler's theorem, demonstrating that \( a^{\phi(n)-1}b \) is a solution for \( ax \equiv b \pmod{n} \) when \( (a,n) = 1 \). Calculation errors were identified in the solutions for \( 3x \equiv 17 \pmod{29} \) and \( 10x \equiv 21 \pmod{49} \), with corrections provided by forum members.

PREREQUISITES
  • Understanding of modular arithmetic
  • Fermat's Little Theorem
  • Euler's Theorem and the concept of \( \phi(n) \)
  • Basic skills in solving linear congruences
NEXT STEPS
  • Study the applications of Fermat's Little Theorem in cryptography
  • Learn about advanced techniques for solving linear congruences
  • Explore the properties and applications of the Euler's totient function \( \phi(n) \)
  • Investigate the Chinese Remainder Theorem for solving systems of congruences
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in modular arithmetic and its applications in cryptography and algorithm design.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

  • Let $p$ a prime and $p \nmid a$,prove that $a^{p-2}b$ is a solution of $\displaystyle{ax \equiv b \pmod p}$
    Solve: $2x \equiv 1 \pmod{31} \\ 3x \equiv 17 \pmod{29}$
  • If $(a,n)=1$,prove that $a^{\phi(n)-1}b$ is a solution of $\displaystyle{ax \equiv b \pmod n}$
    Solve: $3x \equiv 5 \pmod{26} \\ 10x \equiv 21 \pmod{49}$

That'a what I have tried:


  • $$(a,p)=1$$
    So,from Fermat's theorem:

    $$a^{p-1} \equiv 1 \pmod p \Rightarrow a \cdot a^{p-2}b \equiv b \pmod p$$

    $$\text{So, } a^{p-2}b \text{ is a solution of } ax \equiv b \pmod p$$

    $$2x \equiv 1 \pmod {31}$$
    $$\text{As } (2,31)=1,\text{ there is exactly one solution,and according to the exercise,it is this one: } 2^{31-2}=2^{29}$$
    $$x \equiv 2^{29}\pmod {31} \Rightarrow x \equiv 16 \pmod{31}$$$$3x \equiv 17 \pmod{29}, (3,17)=1, \text{ so there is exactly one solution,and according to the exercise,it is this one: } 3^{29-2} \cdot 17$$
    $$x \equiv 3^{29-2} \cdot 17 \pmod{19} \Rightarrow x \equiv 12 \pmod{29}$$
  • $$(a,n)=1, \text{ so from Euler's theorem: } a^{\phi(n)} \equiv 1 \pmod n$$
    $$a \cdot a^{\phi(n)-1} \equiv 1 \pmod n \Rightarrow a \cdot b a^{\phi(n)-1} \equiv b \mod n$$

    $$So, b a^{\phi(n)-1} \text{ is a solution of } ax \equiv b \pmod n$$

    $$3x \equiv 5 \pmod{26} , (3,16=1), \text{ so the only solution is : } 3^{\phi(26)-1}5=3^{11} \cdot 5 \equiv 19 \pmod{26} $$

    $$10x \equiv 21 \pmod{49}, (10,49)=1, \text{ so the only solution is : } 10^{\phi(49)-1}21=10^{41} \cdot 21\equiv 10 \pmod{49}$$

Could you tell me if it is right or if I have done something wrong? (Thinking)
 
Last edited:
Physics news on Phys.org
Hi! (Smile)

Your reasoning is flawless! (Sun)

But... it appears you have made 2 calculation mistakes. (Worried)
 
I like Serena said:
Hi! (Smile)

Your reasoning is flawless! (Sun)
(Clapping)(Clapping)

I like Serena said:
But... it appears you have made 2 calculation mistakes. (Worried)

Oh yes , you are right!
At $3x \equiv 17 \pmod{29}$ the solution must be: $x \equiv 2 \pmod{29}$ and at $10x \equiv 21 \pmod{49}$,the solution must be $x \equiv 7 \mod{49}$.

Or am I wrong? (Thinking)
 
evinda said:
Oh yes , you are right!
At $3x \equiv 17 \pmod{29}$ the solution must be: $x \equiv 2 \pmod{29}$ and at $10x \equiv 21 \pmod{49}$,the solution must be $x \equiv 7 \mod{49}$.

Or am I wrong? (Thinking)

You found them! (Nod)

Well... I think still one of them is wrong. (Worried)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K