MHB Show that it's a solution and solve the primarities...

  • Thread starter Thread starter evinda
  • Start date Start date
AI Thread Summary
The discussion focuses on proving that \( a^{p-2}b \) and \( a^{\phi(n)-1}b \) are solutions to the congruences \( ax \equiv b \pmod{p} \) and \( ax \equiv b \pmod{n} \) respectively, using Fermat's and Euler's theorems. The user initially provides solutions for specific modular equations but is informed that they made two calculation errors. The correct solutions for the equations \( 3x \equiv 17 \pmod{29} \) and \( 10x \equiv 21 \pmod{49} \) are clarified as \( x \equiv 2 \pmod{29} \) and \( x \equiv 7 \pmod{49} \). The conversation highlights the importance of accurate calculations in modular arithmetic. Overall, the user demonstrates a solid understanding of the underlying theorems but needs to correct specific computational mistakes.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

  • Let $p$ a prime and $p \nmid a$,prove that $a^{p-2}b$ is a solution of $\displaystyle{ax \equiv b \pmod p}$
    Solve: $2x \equiv 1 \pmod{31} \\ 3x \equiv 17 \pmod{29}$
  • If $(a,n)=1$,prove that $a^{\phi(n)-1}b$ is a solution of $\displaystyle{ax \equiv b \pmod n}$
    Solve: $3x \equiv 5 \pmod{26} \\ 10x \equiv 21 \pmod{49}$

That'a what I have tried:


  • $$(a,p)=1$$
    So,from Fermat's theorem:

    $$a^{p-1} \equiv 1 \pmod p \Rightarrow a \cdot a^{p-2}b \equiv b \pmod p$$

    $$\text{So, } a^{p-2}b \text{ is a solution of } ax \equiv b \pmod p$$

    $$2x \equiv 1 \pmod {31}$$
    $$\text{As } (2,31)=1,\text{ there is exactly one solution,and according to the exercise,it is this one: } 2^{31-2}=2^{29}$$
    $$x \equiv 2^{29}\pmod {31} \Rightarrow x \equiv 16 \pmod{31}$$$$3x \equiv 17 \pmod{29}, (3,17)=1, \text{ so there is exactly one solution,and according to the exercise,it is this one: } 3^{29-2} \cdot 17$$
    $$x \equiv 3^{29-2} \cdot 17 \pmod{19} \Rightarrow x \equiv 12 \pmod{29}$$
  • $$(a,n)=1, \text{ so from Euler's theorem: } a^{\phi(n)} \equiv 1 \pmod n$$
    $$a \cdot a^{\phi(n)-1} \equiv 1 \pmod n \Rightarrow a \cdot b a^{\phi(n)-1} \equiv b \mod n$$

    $$So, b a^{\phi(n)-1} \text{ is a solution of } ax \equiv b \pmod n$$

    $$3x \equiv 5 \pmod{26} , (3,16=1), \text{ so the only solution is : } 3^{\phi(26)-1}5=3^{11} \cdot 5 \equiv 19 \pmod{26} $$

    $$10x \equiv 21 \pmod{49}, (10,49)=1, \text{ so the only solution is : } 10^{\phi(49)-1}21=10^{41} \cdot 21\equiv 10 \pmod{49}$$

Could you tell me if it is right or if I have done something wrong? (Thinking)
 
Last edited:
Mathematics news on Phys.org
Hi! (Smile)

Your reasoning is flawless! (Sun)

But... it appears you have made 2 calculation mistakes. (Worried)
 
I like Serena said:
Hi! (Smile)

Your reasoning is flawless! (Sun)
(Clapping)(Clapping)

I like Serena said:
But... it appears you have made 2 calculation mistakes. (Worried)

Oh yes , you are right!
At $3x \equiv 17 \pmod{29}$ the solution must be: $x \equiv 2 \pmod{29}$ and at $10x \equiv 21 \pmod{49}$,the solution must be $x \equiv 7 \mod{49}$.

Or am I wrong? (Thinking)
 
evinda said:
Oh yes , you are right!
At $3x \equiv 17 \pmod{29}$ the solution must be: $x \equiv 2 \pmod{29}$ and at $10x \equiv 21 \pmod{49}$,the solution must be $x \equiv 7 \mod{49}$.

Or am I wrong? (Thinking)

You found them! (Nod)

Well... I think still one of them is wrong. (Worried)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top