VinnyCee
- 486
- 0
Homework Statement
Show that \left[\left(p\,\longrightarrow\,q\right)\,\wedge\,\left(q\,\longrightarrow\,r\right)\right]\,\longrightarrow\,\left(p\,\longrightarrow\,r\right) is a tautology.
Homework Equations
Logical equivalences.
The Attempt at a Solution
\begin{array}{l}<br /> \left[ {\left( {p\; \to \;q} \right)\; \wedge \;\left( {q\; \to \;r} \right)} \right]\; \to \;\left( {p\; \to \;r} \right) \\ <br /> \left[ {\left( {\neg p\; \vee \;q} \right)\; \wedge \;\left( {\neg q\; \vee \;r} \right)} \right]\; \to \;\left( {p\; \to \;r} \right) \\ <br /> \left\{ {\left[ {\left( {\neg p\; \vee \;q} \right)\; \wedge \;\neg q} \right]\; \vee \;\left[ {\left( {\neg p\; \vee \;q} \right)\; \wedge \;r} \right]} \right\}\; \to \;\left( {p\; \to \;r} \right) \\ <br /> \left\{ {\left[ {\left( {\neg p\; \wedge \;\neg q} \right)\; \vee \;\left( {q\; \wedge \;\neg q} \right)} \right]\; \vee \;\left[ {\left( {\neg p\; \wedge \;r} \right)\; \vee \;\left( {q\; \wedge \;r} \right)} \right]} \right\} \to \;\left( {p\; \to \;r} \right) \\ <br /> \left\{ {\left[ {\left( {\neg p\; \wedge \;\neg q} \right)\; \vee \;{\rm F}} \right]\; \vee \;\left[ {\left( {\neg p\; \wedge \;r} \right)\; \vee \;\left( {q\; \wedge \;r} \right)} \right]} \right\}\; \to \;\left( {p\; \to \;r} \right) \\ <br /> \left\{ {\left[ {\neg p\; \wedge \;\neg q} \right]\; \vee \;\left[ {\left( {\neg p\; \wedge \;r} \right)\; \vee \;\left( {q\; \wedge \;r} \right)} \right]} \right\}\; \to \;\left( {p\; \to \;r} \right) \\ <br /> \end{array}
What now?